




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
裂项相消法求和把数列的通项拆成两项之差、正负相消剩下首尾若干项。1、 特别是对于,其中是各项均不为0的等差数列,通常用裂项相消法,即利用=,其中2、 常见拆项: 例1 求数列的前和例2 求数列的前和例3 求数列的前和例4 求数列的前n项和.例5:求数列,的前n项和S例6、 求和一、累加法 1适用于: -这是广义的等差数列 累加法是最基本的二个方法之一。2若,则 两边分别相加得 例1 已知数列满足,求数列的通项公式。解:由得则所以数列的通项公式为。例2 已知数列满足,求数列的通项公式。解法一:由得则所以解法二:两边除以,得,则,故因此,则练习1.已知数列的首项为1,且写出数列的通项公式. 答案:练习2.已知数列满足,求此数列的通项公式. 答案:裂项求和 评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。例3.已知数列中, 且,求数列的通项公式.解:由已知得,化简有,由类型(1)有,又得,所以,又,则此题也可以用数学归纳法来求解.二、累乘法 1.。 -适用于: -这是广义的等比数列累乘法是最基本的二个方法之二。2若,则两边分别相乘得,例4 已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为例5.设是首项为1的正项数列,且(=1,2, 3,),则它的通项公式是=_.解:已知等式可化为:()(n+1), 即时,=.评注:本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到与的更为明显的关系式,从而求出.练习.已知,求数列an的通项公式.答案:-1.评注:本题解题的关键是把原来
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瓶装燃气经理管理制度
- 生产基础工作管理制度
- 公园太极比赛活动方案
- 专业美发管理制度
- 专利维护管理制度
- 专用教师管理制度
- 业务品质管理制度
- 业务规范管理制度
- 东航公司管理制度
- 丝印工艺管理制度
- 墓地征用协议书范本
- 2025年农艺工(高级)职业技能鉴定参考试题库(含答案)
- 临床气管插管拔管后吞咽障碍评估与干预实践应用
- 海南海虹化纤工业有限公司地块第二阶段土壤污染状况调查报告
- 高压灭菌锅使用管理制度
- 坚持教育优先发展
- 外研版三年级下册英语全册单元测试卷(含期中期末试卷及听力音频)
- 断绝父母关系协议书
- 2025年光伏发电项目合同能源管理合同
- 2021年山东省6月普通高中学业水平合格考试化学试题(版含答案)
- 2025年广西宏桂资产经营集团招聘笔试参考题库含答案解析
评论
0/150
提交评论