



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
211 一元二次方程教学目标【知识与技能】1.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式. 2.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根.【过程与方法】1.通过根据实际问题列方程,向学生渗透知识来源于生活. 2.通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其他三种特殊形式. 3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念.【情感态度】 通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情【教学重点】 一元二次方程的概念,一般形式和一元二次方程的根的概念【教学难点】通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念教学过程一、情境导入(课件展示问题)雷锋纪念馆前的雷锋雕像高为2m,设计者当初设计它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,即下部高度的平方等于上部与全部的积,如果设此雕像的下部高为x m,则其上部高为(2-x)m,由此可得到的等量关系如何?它是关于x的方程吗?如果是,你能看出它和我们以往学过的方程有什么不同吗?2、 探索新知由上述问题,我们可以得到,即.显然这个方程只含有一个未知数,且x的最高次数为2,这类方程在现实生活中有广泛的应用.探究问题1 如图,有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四角突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?x 教师设置如下问题学生讨论:如果设四角折起的正方形的边长为x cm,则制成的无盖方盒的底面长为多少?宽为多少?由底面积为3600m2可得到的方程又是怎样的?讨论结果:设切去的正方形的边长为x cm,则盒底的长为(100-2x)cm,宽为(50-2x)cm.根据方盒的底面积为3600m2,得(100-2x)(50-2x)=3600.整理,得.化简得.由次方程可以得出所切正方形的具体尺寸.探究问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?教师提出以下问题,引导学生思考方程的建模过程:(1) 这次比赛共安排多少场?(2) 若设应邀请x个队参赛,则每个队与其他几个队各赛一场?这样共应有多少场比赛?(3) 由此可列出的方程是什么?化简后的方程是什么? 讨论结果:全部比赛的场数为.设应邀请x个队参赛,每个队要与其他(x-1)个队各赛一场,因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共场.列方程.整理,得.化简,得,即. 观察思考,口答下面的问题: (1)上面的方程整理后含有几个未知数? (2)按照整式中的多项式的规定,它们最高次数是几次? (3)有等号吗?或与以前多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程归纳总结像这样,等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式这种形式叫做一元二次方程的一般形式其中是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项想一想二次项系数a为什么不能为0?在指出二次项系数、一次项系数和常数项时,a、b、c一定是正数吗?探究问题3 探究问题2中可以看出,由于参赛球队的支数x只能是正整数,由此可列下表:x12345678910.x2-x-56由上表可得,当x=8时,所以x=8是方程的解,一元二次方程的解也叫做一元二次方程的根. 学生思考方程有一个根为x=8,它还有其他的根吗?当x=-7时,故x=-7也是方程的一个根.归纳总结使方程左右两边相等的未知数的值就是这个一元二次方程的根.一个一元二次方程如果有实数根,则必然有两个实数根,通常记为,3、 掌握新知 例1 求证:关于x的方程,不论m取何值,该方程都是一元二次方程 分析:要证明不论m取何值,该方程都是一元二次方程,只要证明即可 证明: , ,即 不论m取何值,该方程都是一元二次方程 例2 将方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项 分析:一元二次方程的一般形式是因此,方程必须运用整式运算进行整理,包括去括号、移项等解:去括号,得 移项,合并同类项,得一元二次方程的一般形式 其中二次项系数为3,一次项系数为-8,常数项为-104、 巩固练习 1.在下列方程中,一元二次方程的个数是( ) ,. A.1个 B.2个 C.3个 D.4个 2.已知方程的一个根是,则m的值为_ 3.关于x的方程是一元二次方程,则a的取值范围是_.4.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式,指出其二次项系数、一次项系数和常数项.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x.答案:1.A 2.-13 3.a1 4.(1),其中二次项系数为4,一次项系数为0,常数项为-25;(2),其中二次项系数为1,一次项系数为12,常数项为-10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年机关食堂厨师招聘面试模拟题及答案
- 外事办公室翻译招聘笔试(韩语)经典考题含答案
- 2025年外事办公室翻译招聘面试(西班牙语)预测题及答案
- 2025私营企业间的借款合同
- 物流产品组合协议
- 2025年反欺诈试题及答案
- 2025年法律文本翻译专业资格考试试卷及答案
- 2025年中国肉类协会肉类分割师认证考试专项练习含答案
- 政府会计准则制度实施能力考试(农业农村事业单位)经典考题含答案
- 2025年文旅局遴选公务员笔试题库附答案
- 塔吊拆除安全操作方案模板
- 普惠金融业务讲座
- 虚拟健康咨询接受度分析-洞察及研究
- 多发性周围神经病护理查房
- 巡检员质量培训
- GB/T 1303.1-1998环氧玻璃布层压板
- GB/T 11684-2003核仪器电磁环境条件与试验方法
- 家具厂精益改善推行报告课件
- 不锈钢棚施工方案
- 第2章 动车组检修工艺基础动车组维护与检修
- 筋针疗法牛君银培训课件
评论
0/150
提交评论