上海中考数学复习要点汇总_第1页
上海中考数学复习要点汇总_第2页
上海中考数学复习要点汇总_第3页
上海中考数学复习要点汇总_第4页
上海中考数学复习要点汇总_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档 1欢迎下载 第一部分 基础知识汇总第一部分 基础知识汇总 数学定理数学定理 公式汇编 有些不在大纲范围 但高分必须知道的 公式汇编 有些不在大纲范围 但高分必须知道的 一 数与代数一 数与代数 1 1 数与式数与式 1 1 实数实数 性质 实数 a 的相反数是 a 实数 a 的倒数是 a 0 a 1 实数 a 的绝对值 0 0 0 0 aa a aa a 正数大于 0 负数小于 0 两个负实数 绝对值大的反而小 2 2 二次根式 二次根式 积与商的方根的运算性质 a 0 b 0 a 0 b 0 baab b a b a 二次根式的性质 0 0 2 aa aa aa 2 整式与分式 同底数幂的乘法法则 同底数幂相乘 底数不变 指数相加 即 m n 为正整数 nmnm aaa 同底数幂的除法法则 同底数幂相除 底数不变 指数相减 即 a 0 m n 为正整数 nmnm aaa m n 幂的乘方法则 幂的乘方 底数不变 指数相乘 即 n 为正整数 nnn baab 零指数 a 0 1 0 a 负整数指数 a 0 n 为正整数 n n a a 1 平方差公式 两个数的和与这两个数的差的积等于这两个数的平方 即 22 bababa 完全平方公式 两数和 或差 的平方 等于它们的平方和 加上 或减去 它们的积的 2 倍 即 222 2 bababa 3 3 分式分式 分式的基本性质 分式的分子和分母都乘以 或除以 同一个不等于零的整式 分式的值不变 即 mb ma b a 其中 m 是不等于零的代数式 mb ma b a 分式的乘法法则 bd ac d c b a 分式的除法法则 0 c bc ad c d b a d c b a 分式的乘方法则 n 为正整数 n n n b a b a 精品文档 2欢迎下载 同分母分式加减法则 c ba c b c a 异分母分式加减法则 bc cdab b d c a 2 2 方程与不等式方程与不等式 一元二次方程 a 0 的求根公式 0 2 cbxax 04 2 4 2 2 acb a acbb x 一元二次方程根的判别式 叫做一元二次方程 a 0 的根的判别式 acb4 2 0 2 cbxax 方程有两个不相等的实数根 0 方程有两个相等的实数根 0 方程没有实数根 0 一元二次方程根与系数的关系 设 是方程 a 0 的两个根 那么 1 x 2 x0 2 cbxax 1 x 2 x a b 1 x 2 x a c 不等式的基本性质 不等式两边都加上 或减去 同一个数或同一个整式 不等号的方向不变 不等式两边都乘以 或除以 同一个正数 不等号的方向不变 不等式两边都乘以 或除以 同一个负数 不等号的方向改变 3 3 函数函数 一次函数的图象 函数 y kx b k b 是常数 k 0 的图象是过点 0 b 且与直线 y kx 平行的一条直线 一次函数的性质 设 y kx b k 0 则当 k 0 时 y 随 x 的增大而增大 当 k0 时 y 随 x 的增大而增大 0 kkxy 当 k0 则当 x 0 时或 x 0 时 y 分别随 x 的增大而减小 如果 k0 时或 x0 时 抛物线开口向上 当 a0 时 如果 则 y 随 x 的增大而减小 如果 则 y 随 x 的增大而增大 当 a 0 时 a b x 2 a b x 2 如果 则 y 随 x 的增大而增大 如果 则 y 随 x 的增大而减小 a b x 2 a b x 2 二 空间与图形二 空间与图形 1 1 图形的认识图形的认识 1 1 角角 角平分线的性质 角平分线上的点到角的两边距离相等 角的内部到两边距离相等的点在角平分线上 精品文档 3欢迎下载 2 2 相交线与平行线相交线与平行线 同角或等角的补角相等 同角或等角的余角相等 对顶角的性质 对顶角的性质 对顶角相等 垂线的性质 垂线的性质 过一点有且只有一条直线与已知直线垂直 直线外一点有与直线上各点连结的所有线段中 垂线段最短 线段垂直平分线定义 过线段的中点并且垂直于线段的直线叫做线段的垂直平分线 线段垂直平分线的性质 线段垂直平分线上的点到线段两端点的距离相等 到线段两端点的距离相等的点在线段的垂 直平分线 平行线的定义平行线的定义 在同一平面内不相交的两条直线叫做平行线 平行线的判定 平行线的判定 同位角相等 两直线平行 内错角相等 两直线平行 同旁内角互补 两直线平行 平行线的特征 平行线的特征 两直线平行 同位角相等 两直线平行 内错角相等 两直线平行 同旁内角互补 平行公理 平行公理 经过直线外一点有且只有一条直线平行于已知直线 3 3 三角形三角形 三角形的三边关系定理及推论三角形的三边关系定理及推论 三角形的两边之和大于第三边 两边之差小于第三边 三角形的内角和定理 三角形的内角和定理 三角形的三个内角的和等于 180 三角形的外角和定理 三角形的外角和定理 三角形的一个外角等于和它不相邻的两个的和 三角形的外角和定理推理三角形的外角和定理推理 三角形的一个外角大于任何一个和它不相邻的内角 三角形的三条角平分线交于一点 内心 三角形的三边的垂直平分线交于一点 外心 三角形中位线定理 三角形中位线定理 三角形两边中点的连线平行于第三边 并且等于第三边的一半 全等三角形的判定 全等三角形的判定 边角边公理 SAS 角边角公理 ASA 角角边定理 AAS 边边边公理 SSS 斜边 直角边公理 HL 等腰三角形的性质 等腰三角形的性质 等腰三角形的两个底角相等 等腰三角形的顶角平分线 底边上的中线 底边上的高互相重合 三线合一 等腰三角形的判定 等腰三角形的判定 有两个角相等的三角形是等腰三角形 直角三角形的性质 直角三角形的性质 直角三角形的两个锐角互为余角 直角三角形斜边上的中线等于斜边的一半 直角三角形的两直角边的平方和等于斜边的平方 勾股定理 直角三角形中角所对的直角边等于斜边的一半 30 直角三角形的判定 直角三角形的判定 有两个角互余的三角形是直角三角形 如果三角形的三边长 a b c 有下面关系 那么这个三角形是直角三角形 勾股定理的逆定理 222 cba 4 4 四边形四边形 多边形的内角和定理 多边形的内角和定理 n 边形的内角和等于 n 3 n 是正整数 180 2 n 平行四边形的性质 平行四边形的性质 平行四边形的对边相等 平行四边形的对角相等 平行四边形的对角线互相平分 精品文档 4欢迎下载 平行四边形的判定 平行四边形的判定 两组对角分别相等的四边形是平行四边形 两组对边分别相等的四边形是平行四边形 对角线互相平分的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形 矩形的性质 矩形的性质 除具有平行四边形所有性质外 矩形的四个角都是直角 矩形的对角线相等 矩形的判定 矩形的判定 有三个角是直角的四边形是矩形 对角线相等的平行四边形是矩形 菱形的特征 菱形的特征 除具有平行四边形所有性质外 菱形的四边相等 菱形的对角线互相垂直平分 并且每一条对角线平分一组对角 菱形的判定 菱形的判定 四边相等的四边形是菱形 正方形的特征 正方形的特征 正方形的四边相等 正方形的四个角都是直角 正方形的两条对角线相等 且互相垂直平分 每一条对角线平分一组对角 正方形的判定 正方形的判定 有一个角是直角的菱形是正方形 有一组邻边相等的矩形是正方形 等腰梯形的特征等腰梯形的特征 等腰梯形同一底边上的两个内角相等 等腰梯形的两条对角线相等 等腰梯形的判定 等腰梯形的判定 同一底边上的两个内角相等的梯形是等腰梯形 两条对角线相等的梯形是等腰梯形 平面图形的镶嵌 平面图形的镶嵌 任意一个三角形 四边形或正六边形可以镶嵌平面 5 5 圆圆 点与圆的位置关系 设圆的半径为 r 点 P 到圆心 O 的距离为 d 点 P 在圆上 则 d r 反之也成立 点 P 在圆内 则 dr 反之也成立 圆心角 弦和弧三者之间的关系圆心角 弦和弧三者之间的关系 在同圆或等圆中 圆心角 弦和弧三者之间只要有一组相等 可得到另外两组也相等 圆的确定 圆的确定 不在一直线上的三个点确定一个圆 垂径定理 及垂径定理的推论 径定理 及垂径定理的推论 垂直于弦的直径平分弦 并且平分弦所对的两条弧 平行弦夹等弧 平行弦夹等弧 圆的两条平行弦所夹的弧相等 圆心角定理 圆心角定理 圆心角的度数等于它所对弧的度数 圆心角 弧 弦 弦心距之间的关系定理及推论圆心角 弧 弦 弦心距之间的关系定理及推论 在同圆或等圆中 相等的圆心角所对的弧相等 所对的弦的弦心距 相等 推论 推论 在同圆或等圆中 如果两个圆心角 两条弧 两条弦或两条弦心距中有一组量相等 那么它们所对应的其余各 组量分别相等 圆周角定理 圆周角定理 圆周角的度数等于它所对的弧的度数的一半 圆周角定理的推论圆周角定理的推论 直径所对的圆周角是直角 反过来 的圆周角所对的弦是直径 90 切线的判定定理 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 切线的性质定理 切线的性质定理 圆的切线垂直于过切点的半径 切线长定理切线长定理 从圆外一点引圆的两条切线 这一点到两切点的线段相等 它与圆心的连线平分两切线的夹角 弧长计算公式弧长计算公式 R 为圆的半径 n 是弧所对的圆心角的度数 为弧长 180 Rn l l 扇形面积扇形面积 或 R 为半径 n 是扇形所对的圆心角的度数 为扇形的弧长 2 360 R n S 扇形 lRS 2 1 扇形 l 弓形面积 SSS 扇形弓形 6 6 尺规作图 基本作图 利用基本图形作三角形和圆 尺规作图 基本作图 利用基本图形作三角形和圆 作一条线段等于已知线段 作一个角等于已知角 作已知角的平分线 作线段的垂直平分线 过一点作已知直线垂线 7 视图与投影 画基本几何体 直棱柱 圆柱 圆锥 球 的三视图 主视图 左视图 俯视图 基本几何体的展开图 除球外 根据展开图判断和设别立体模型 2 2 图形与变换图形与变换 精品文档 5欢迎下载 图形的轴对称图形的轴对称 轴对称的基本性质 对应点所连的线段被对称轴平分 等腰三角形 矩形 菱形 等腰梯形 正多边形 圆是轴对称图形 图形的平移图形的平移 图形平移的基本性质 对应点的连线平行且相等 图形的旋转图形的旋转 图形旋转的基本性质 对应点到旋转中心的距离相等 对应点与旋转中心的距离相等 对应点与旋转中心连线所成的 角彼此相等 平行四边形 矩形 菱形 正多边形 边数是偶数 圆是中心对称图形 图形的相似图形的相似 比例的基本性质 比例的基本性质 如果 则 如果 则 d c b a bcad bcad 0 0 db d c b a 相似三角形的设别方法 相似三角形的设别方法 两组角对应相等 两边对应成比例且夹角对应相等 三边对应成比例 相似三角形的性质相似三角形的性质 相似三角形的对应角相等 相似三角形的对应边成比例 相似三角形的周长之比等于相似比 相似三角形的面积比等于相似比的平方 相似多边形的性质 相似多边形的性质 相似多边形的对应角相等 相似多边形的对应边成比例 相似多边形的面积之比等于相似比的平方 图形的位似与图形相似的关系 图形的位似与图形相似的关系 两个图形相似不一定是位似图形 两个位似图形一定是相似图形 三角函数三角函数 Rt ABC 中 C SinA cosA tanA CotA 90 斜边 的对边A 斜边 的邻边A 的邻边 的对边 A A 的对边 的邻边 A A 特殊角的三角函数值 30 45 60 Sin 2 1 2 2 2 3 Cos 2 3 2 2 2 1 tan 3 3 13 Cot 31 3 3 三 概率与统计三 概率与统计 1 1 统计 统计 数据收集方法 数据的表示方法 统计表和扇形统计图 折线统计图 条形统计图 1 1 总体与样本 总体与样本 所要考察对象的全体叫做总体 其中每一个考察对象叫做个体 从总体中所抽取的一部分个体叫做总体的一个样本 样本中个体数目叫做样本的容量 数据的分析与决策 借助所学的统计知识 对所收集到的数据进行整理 分析 在分析的结果上再作判断和决策 2 2 众数与中位数 众数与中位数 众数 一组数据中 出现次数最多的数据 中位数 将一组数据按从大到小依次排列 处在最中间位置的数据 3 3 频率分布直方图 频率分布直方图 频率 各小组的频数之和等于总数 各小组的频率之和等于 1 频率分布直方图中各个小长方形的面积为各组 总数 频数 精品文档 6欢迎下载 频率 4 4 平均数的两个公式 平均数的两个公式 n 个数 的平均数为 1 x 2 x n x n xxx x n 21 如果在 n 个数中 出现次 出现次 出现次 并且 n 则 1 x 1 f 2 x 2 f k x k f 1 f 2 f k f n fxfxfx x kk 2211 5 5 极差 方差与标准差计算公式 极差 方差与标准差计算公式 极差 用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围 用这种方法得到的差称为极差 即 极差 最大值 最小值 方差 数据 的方差为 1 x 2 x n x 2 s 则 2 s 22 2 2 1 1 xxxxxx n n 标准差 数据 的标准差 1 x 2 x n xs 则 s 22 2 2 1 1 xxxxxx n n 一组数据的方差越大 这组数据的波动越大 2 2 概率概率 如果用 P 表示一个事件发生的概率 则 0 P A 1 P 必然事件 1 P 不可能事件 0 在具体情境中了解概率的意义 运用列举法 包括列表 画树状图 计算简单事件发生的概率 大量的重复实验时频率可视为事件发生概率的估计值 3 统计的初步知识 概率在社会生活中有着广泛的应用 能用所学的这些知识解决实际问题 数学定理数学定理 公式汇编二公式汇编二 一一 定理 性质定理 性质 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中 垂线段最短 7 平行公理 经过直线外一点 有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行 这两条直线也互相平行 9 同位角相等 两直线平行 10 内错角相等 两直线平行 11 同旁内角互补 两直线平行 12 两直线平行 同位角相等 13 两直线平行 内错角相等 14 两直线平行 同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于 180 18 推论 1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和 精品文档 7欢迎下载 20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边 对应角相等 22 边角边公理 SAS 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理 ASA 有两角和它们的夹边对应相等的两个三角形全等 24 推论 AAS 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理 SSS 有三边对应相等的两个三角形全等 26 斜边 直角边公理 HL 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理 1 在角的平分线上的点到这个角的两边的距离相等 28 定理 2 到一个角的两边的距离相同的点 在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 即等边对等角 31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线 底边上的中线和底边上的高互相重合 33 推论 3 等边三角形的各角都相等 并且每一个角都等于 60 34 等腰三角形的判定定理 如果一个三角形有两个角相等 那么这两个角所对的边也相等 等角对等边 35 推论 1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于 60 的等腰三角形是等边三角形 37 在直角三角形中 如果一个锐角等于 30 那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点 在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理 1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称 那么对称轴是对应点连线的垂直平分线 44 定理 3 两个图形关于某直线对称 如果它们的对应线段或延长线相交 那么交点在对称轴上 45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分 那么这两个图形关于这条直线对称 46 勾股定理 直角三角形两直角边 a b 的平方和 等于斜边 c 的平方 即 a 2 b 2 c 2 47 勾股定理的逆定理 如果三角形的三边长 a b c 有关系 a 2 b 2 c 2 那么这个三角形是直角三角形 48 定理 四边形的内角和等于 360 49 四边形的外角和等于 360 50 多边形内角和定理 n 边形的内角的和等于 n 2 180 51 推论 任意多边的外角和等于 360 52 平行四边形性质定理 1 平行四边形的对角相等 53 平行四边形性质定理 2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55 平行四边形性质定理 3 平行四边形的对角线互相平分 56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理 1 矩形的四个角都是直角 61 矩形性质定理 2 矩形的对角线相等 62 矩形判定定理 1 有三个角是直角的四边形是矩形 63 矩形判定定理 2 对角线相等的平行四边形是矩形 64 菱形性质定理 1 菱形的四条边都相等 65 菱形性质定理 2 菱形的对角线互相垂直 并且每一条对角线平分一组对角 66 菱形面积 对角线乘积的一半 即 S a b 2 67 菱形判定定理 1 四边都相等的四边形是菱形 精品文档 8欢迎下载 68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形 69 正方形性质定理 1 正方形的四个角都是直角 四条边都相等 70 正方形性质定理 2 正方形的两条对角线相等 并且互相垂直平分 每条对角线平分一组对角 71 定理 1 关于中心对称的两个图形是全等的 72 定理 2 关于中心对称的两个图形 对称点连线都经过对称中心 并且被对称中心平分 73 逆定理 如果两个图形的对应点连线都经过某一点 并且被这一 点平分 那么这两个图形关于这一点对称 74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等 76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等 那么在其他直线上截得的线段也相等 79 推论 1 经过梯形一腰的中点与底平行的直线 必平分另一腰 80 推论 2 经过三角形一边的中点与另一边平行的直线 必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边 并且等于它 的一半 82 梯形中位线定理 梯形的中位线平行于两底 并且等于两底和的 一半 L a b 2 S L h 83 1 比例的基本性质 如果 a b c d 那么 ad bc 如果 ad bc 那么 a b c d 84 2 合比性质 如果 a b c d 那么 a b b c d d 85 3 等比性质 如果 a b c d m n b d n 0 那么 a c m b d n a b 86 平行线分线段成比例定理 三条平行线截两条直线 所得的对应 线段成比例 87 推论 平行于三角形一边的直线截其他两边 或两边的延长线 所得的对应线段成比例 88 定理 如果一条直线截三角形的两边 或两边的延长线 所得的对应线段成比例 那么这条直线平行于三角形的第 三边 89 平行于三角形的一边 并且和其他两边相交的直线 所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边 或两边的延长线 相交 所构成的三角形与原三角形相似 91 相似三角形判定定理 1 两角对应相等 两三角形相似 ASA 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理 2 两边对应成比例且夹角相等 两三角形相似 SAS 94 判定定理 3 三边对应成比例 两三角形相似 SSS 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例 那么这两个 直角三角形相似 96 性质定理 1 相似三角形对应高的比 对应中线的比与对应角平 分线的比都等于相似比 97 性质定理 2 相似三角形周长的比等于相似比 98 性质定理 3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值 任意锐角的余弦值等 于它的余角的正弦值 100 任意锐角的正切值等于它的余角的余切值 任意锐角的余切值等 于它的余角的正切值 101 圆是定点的距离等于定长的点的集合 102 圆的内部可以看作是圆心的距离小于半径的点的集合 103 圆的外部可以看作是圆心的距离大于半径的点的集合 104 同圆或等圆的半径相等 105 到定点的距离等于定长的点的轨迹 是以定点为圆心 定长为半 径的圆 106 和已知线段两个端点的距离相等的点的轨迹 是着条线段的垂直平分线 107 到已知角的两边距离相等的点的轨迹 是这个角的平分线 108 到两条平行线距离相等的点的轨迹 是和这两条平行线平行且距离相等的一条直线 109 定理 不在同一直线上的三点确定一个圆 110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111 推论 1 平分弦 不是直径 的直径垂直于弦 并且平分弦所对的两条弧 弦的垂直平分线经过圆心 并且平 分弦所对的两条弧 平分弦所对的一条弧的直径 垂直平分弦 并且平分弦所对的另一条弧 112 推论 2 圆的两条平行弦所夹的弧相等 精品文档 9欢迎下载 113 圆是以圆心为对称中心的中心对称图形 114 定理 在同圆或等圆中 相等的圆心角所对的弧相等 所对的弦相等 所对的弦的弦心距相等 115 推论 在同圆或等圆中 如果两个圆心角 两条弧 两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余 各组量都相等 116 定理 一条弧所对的圆周角等于它所对的圆心角的一半 117 推论 1 同弧或等弧所对的圆周角相等 同圆或等圆中 相等的圆周角所对的弧也相等 118 推论 2 半圆 或直径 所对的圆周角是直角 90 的圆周角所 对的弦是直径 119 推论 3 如果三角形一边上的中线等于这边的一半 那么这个三角形是直角三角形 120 定理 圆的内接四边形的对角互补 并且任何一个外角都等于它 的内对角 121 直线 L 和 O 相交 d r 直线 L 和 O 相切 d r 直线 L 和 O 相离 d r 122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123 切线的性质定理 圆的切线垂直于经过切点的半径 124 推论 1 经过圆心且垂直于切线的直线必经过切点 125 推论 2 经过切点且垂直于切线的直线必经过圆心 126 切线长定理 从圆外一点引圆的两条切线 它们的切线长相等 圆心和这一点的连线平分两条切线的夹角 127 圆的外切四边形的两组对边的和相等 128 弦切角定理 弦切角等于它所夹的弧对的圆周角 129 推论 如果两个弦切角所夹的弧相等 那么这两个弦切角也相等 130 相交弦定理 圆内的两条相交弦 被交点分成的两条线段长的积 相等 131 推论 如果弦与直径垂直相交 那么弦的一半是它分直径所成的 两条线段的比例中项 132 切割线定理 从圆外一点引圆的切线和割线 切线长是这点到割 线与圆交点的两条线段长的比例中项 133 推论 从圆外一点引圆的两条割线 这一点到每条割线与圆的交点的两条线段长的积相等 134 如果两个圆相切 那么切点一定在连心线上 135 两圆外离 d R r 两圆外切 d R r 两圆相交 R r d R r R r 两圆内切 d R r R r 两圆内含 d R r R r 136 定理 相交两圆的连心线垂直平分两圆的公共弦 137 定理 把圆分成 n n 3 依次连结各分点所得的多边形是这个圆的内接正 n 边形 经过各分点作圆的切线 以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形 138 定理 任何正多边形都有一个外接圆和一个内切圆 这两个圆是同心圆 139 正 n 边形的每个内角都等于 n 2 180 n 140 定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形 141 正 n 边形的面积 Sn pnrn 2 p 表示正 n 边形的周长 142 正三角形面积 3a 4 a 表示边长 143 如果在一个顶点周围有 k 个正 n 边形的角 由于这些角的和应为 360 因此 k n 2 180 n 360 化为 n 2 k 2 4 144 弧长计算公式 L n 兀 R 180 145 扇形面积公式 S 扇形 n 兀 R 2 360 LR 2 146 内公切线长 d R r 外公切线长 d R r 二二 实用工具实用工具 常用数学公式常用数学公式 公式分类公式分类 公式表达式公式表达式 乘法与因式分 a2 b2 a b a b a3 b3 a b a2 ab b2 a3 b3 a b a2 ab b2 三角不等式 a b a b a b a b a b b a b a b a b a a a 一元二次方程的解 b b2 4ac 2a b b2 4ac 2a 根与系数的关系根与系数的关系 注 韦达定理 1 x 2 x a b 1 x 2 x a c 判别式判别式 b2 4ac 0 注 方程有两个相等的实根 精品文档 10欢迎下载 b2 4ac 0 注 方程有两个不等的实根 b2 4acn a0 1 a 0 a p 1 ap a 0 p 是正整数 整式的乘方 整式的乘方 单项式与单项式 把系数 相同字母的幂分别相加 其余字母连同其指数不变 作为积的因式 单项式与多项式 根据分配律用单项式去成多项式的每一项 再把积相加 多项式与多项式 先用一个多项式的每一项乘另一个的每一项 再把积相加 平方差公式 平方差公式 两数和与这两数差的积 等于它们的平方差 a b a b a2 b2 完全平方公式 完全平方公式 a b 2 b a 2 a2 2ab b2 a b 2 a b 2 a2 2ab b2 整式除法 整式除法 单项式相除 把系数 同底数幂分别相除后 作为商的因式 对于只在被除式里含有的字母 则连同它的 指数一起作为商的一个因式 多项式除以单项式 先把多项式的每一项分别除以单项式 再把所得商相加 分解因式分解因式 把一个多项式化成几个整式的积的形式 公因式公因式 多项式各项都含有的相同因式 提公因式 提公因式 多项式的各项含有公因式 把这个公因式提出来 将多项式化成两个因式的乘积 完全平方式 完全平方式 形如 a2 2ab b2 和 a2 2ab b2 的式子 运用公式法 运用公式法 把乘法公式反过来 用来把某些多项式分解因式 分式 分式 整式 A 除以整式 B 表示成 A B A 为分式的分子 B 为分式的分母 B 不为 0 分式的基本性质分式的基本性质 分式的分子与分母都乘以 或除以 同一个不等于 0 的整式 分式值不变 约分 约分 把一个分式的分子和分母的公因式约去的变形 精品文档 12欢迎下载 最简分式 最简分式 分子和分母没有公因式的分式 分式乘除法法则 分式乘除法法则 分式相乘 分子相乘作分子 分母相乘作分母 分式相除 把除式的分子和分母颠倒位置后再与被除式相乘 分式加减法则分式加减法则 同分母分式加减 分母不变 分子相加 异分式先通分 再加减 通分通分 根据分式的基本性质 异分母分式化为同分母分式的过程 通分时常取最简公分母 分式方程 分式方程 分母中含有未知数的方程 增根 增根 使原分式方程的分母为 0 的原方程的根 解分式方程必须检验 五 五 方程 组 方程 组 等式等式 用等号表示相等关系的式子 等式具有传递性 方程方程 含有未知数的等式 一元一次方程 元一次方程 一个方程中 只含一个未知数 元 且未知数的指数为 1 次 的方程 等式性质 等式性质 等式两边同时加上 或减去 同一个代数式 结果还是等式 等式两边同时乘以同一个数 或除以同一个不为 0 的数 结果还是等式 移项 移项 从方程一边移到另一边的变形 二元一次方程 二元一次方程 含有两个未知数 且所含未知数的项数的次数都是 1 的方程 二元一次方程组 二元一次方程组 含有两个未知数的两个一次方程所组成的一组方程 二元一次方程的一个解 二元一次方程的一个解 适合一个二元一次方程的一组未知数的值 二元一次方程组的解 元一次方程组的解 二元一次方程组中各个方程的公共解 它们成对出现 代入消元法代入消元法 简称 代入法 将其中一个方程的某未知数用含有另一个未知数的代数式表示 并代入另一个方程中 从 而消去一个未知数 化二元一次方程组为一元一次方程的方法 加减消元法 加减消元法 简称 加减法 通过两式相加 减 消去其中一个未知数的方法 图像法 图像法 根据二元一次方程的解和一次函数图像的关系 找出两直线的交点坐标求解的方法 整式方程 整式方程 等号两边都是关于未知数的整式方程 一元二次方程 一元二次方程 只含有一个未知数的整式方程 化成 ax2 bx c 0 a 0 a b c 为常数 配方法 配方法 通过配成完全平方式的方法得到一元二次方程的根的方法 公式法 公式法 对于 ax2 bx c 0 a 0 a b c 为常数 当 b2 4ac 0 时 当 b2 4ac 0 时 方程无解 可用一元二次 方程的求根公式求解的方法 分解因式法分解因式法 又称 十字相乘法 当一元二次方程的一边为 0 另一边能分解成两个一次因式的乘积时 求方程的根 的方法 六 六 不等式 组 不等式 组 不大于不大于 等于或小于 符号 读作 小于等于 不小于 大于或大于 符号 读作 大于等于 不等式不等式 用符号 或 连接的式子 不等有传递性 除 不等式基本性质不等式基本性质 不等式两边加上 或减去 同一个整式 不等号方向不变 不等式两边乘以 或除以 同一个正数 不等号方向不变 不等式两边乘以 或除以 同一个负数 不等号方向变 不等式的解 不等式的解 能使不等式成立的未知数的值 解集 解集 一个含有未知数的不等式的所有解的统称 解不等式 解不等式 求不等式解集的过程 一元一次不等式 一元一次不等式 不等式的左右两边是整式 只含有一个未知数 且未知数的最高次数是 1 的不等式 一元一次不等式组 一元一次不等式组 由关于同一未知数的几个一元一次不等式合在一起组成 一元一次不等式组的解集一元一次不等式组的解集 一元一次不等式组中各个不等式的解集的公共部分 解不等式组 解不等式组 求不等式解集的过程 一元一次不等式组的解集 一元一次不等式组的解集 同大取大 同小取小 大小不一是无解 七 七 函数 函数 函数 函数 有两个变量 x 和 y 给定 x 值就对应找到一个 y 值 精品文档 13欢迎下载 函数图像 函数图像 把一个函数的自变量 x 与对应的因变量 y 的值分别作为点的横坐标和纵坐标 在直角坐标系里描出它的对 应点 所以点组成的图像 变量包括变量包括 自变量和因变量 关系式 关系式 表示变量之间关系的方法 根据任何一个自变量的值求出相应的因变量的值 表格法 表格法 表示因变量随自变量的变化而变化的情况 图像法图像法 表示变量之间关系的方法 比较直观 平面直角坐标系 平面直角坐标系 在平面内 由两条互相垂直且有公共原点的数轴组成的 两条坐标轴把平面直角坐标系分成面直角坐标系分成 4 4 部分 部分 右上为第一象限 右下为第四象限 左上第二 左下第三 坐标 坐标 过一点分别向 x 轴 y 轴作垂线 垂足在 x 轴 y 轴上所对应的数 a b 则 a b 坐标加减 图形大小和形状不变 坐标乘除 图形会变化 一次函数 一次函数 若两个变量 x y 的关系能表示成 y kx b k b 为常数 k 0 的形式 正比例函数 正比例函数 当 y kx b k b 为常数 k 0 b 0 的时候 即 y kx 其图像过原点 一次函数的图像一次函数的图像 k 0 直线向左 k 0 直线向右 与 x 轴 b k 0 与 y 轴 0 b 反比例函数 反比例函数 若两个变量 x y 的关系能表示成 y k x k 为常数 k 0 的形式 x 不为 0 反比例函数的图像 反比例函数的图像 k0 双曲线在一 三象限 在每一象限内 y 随 x 增大而增大 二次函数 二次函数 两个变量 x y 的关系表示成 y ax2 bx c a 0 a b c 为常数 的函数 二次函数的图像 二次函数的图像 函数图像是抛物线 a 0 时 开口向上有最小值 a 0 时 向下有最大值 y a x h 2 k 的图像 开口方向 对称轴和顶点坐标与 a h k 有关 二次函数 y ax2 bx c 的图像与 x 轴的交点就是 ax2 bx c 0 的根 0 1 2 个 八 八 三角函数 三角函数 正切正切 坡比坡比 Rt ABC 中 锐角 A 的对边与邻边的比 记做 tan A tan A 越大 梯子越陡 正弦 正弦 A 的对边与斜边的比记做 sin A sin A 越大 梯子越陡 余弦余弦 A 的邻边与斜边的比记做 cos A cos A 越小 梯子越陡 锐角 A 的正切 正弦 余弦都是 A 的三角函数 仰角仰角 当从低处观测高处目标时 视线与水平线所成的锐角 俯角俯角 当从高处观测低处目标时 九 解题的 九 解题的 1010 种技巧种技巧 1 1 配方法 配方法 所谓配方 就是把一个解析式利用恒等变形的方法 把其中的某些项配成一个或几个多项式正整数次幂 的和形式 通过配方解决数学问题的方法叫配方法 其中 用的最多的是配成完全平方式 配方法是数学中一种重要 的恒等变形的方法 它的应用非常广泛 在因式分解 化简根式 解方程 证明等式和不等式 求函数的极值和解析 式等方面都经常用到它 2 2 因式分解法 因式分解法 因式分解 就是把一个多项式化成几个整式乘积的形式 因式分解是恒等变形的基础 它作为数学 的一个有力工具 一种数学方法在代数 几何 三角函数等的解题中起着重要的作用 因式分解的方法有许多 除中 学课本上介绍的提取公因式法 公式法 分组分解法 十字相乘法等外 还有如利用拆项添项 求根分解 换元 待 定系数等等 3 3 换元法 换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法 我们通常把未知数或变数称为元 所谓换 元法 就是在一个比较复杂的数学式子中 用新的变元去代替原式的一个部分或改造原来的式子 使它简化 使问题 易于解决 4 4 判别式法与韦达定理 判别式法与韦达定理 一元二次方程 ax2 bx c 0 a b c R a 0 根的判别式 b2 4ac 不仅用来判定根的性 质 而且作为一种解题方法 在代数式变形 解方程 组 解不等式 研究函数乃至解析几何 三角函数运算中都有 非常广泛的应用 韦达定理除了已知一元二次方程的一个根 求另一根 已知两个数的和与积 求这两个数等简单应用外 还可以 求根的对称函数 计论二次方程根的符号 解对称方程组 以及解一些有关二次曲线的问题等 都有非常广泛的应用 5 5 待定系数法 待定系数法 在解数学问题时 若先判断所求的结果具有某种确定的形式 其中含有某些待定的系数 而后根据 题设条件列出关于待定系数的等式 最后解出这些待定系数的值或找到这些待定系数间的某种关系 从而解答数学问 精品文档 14欢迎下载 题 这种解题方法称为待定系数法 它是中学数学中常用的重要方法之一 6 6 构造法 构造法 在解题时 我们常常会采用这样的方法 通过对条件和结论的分析 构造辅助元素 它可以是一个图形 一个方程 组 一个等式 一个函数 一个等价命题等 架起一座连接条件和结论的桥梁 从而使问题得以解决 这 种解题的数学方法 我们称为构造法 运用构造法解题 可以使代数 三角 几何等各种数学知识互相渗透 有利于 问题解决 7 7 反证法 反证法 反证法是一种间接证法 它是先提出一个与命题的结论相反的假设 然后 从这个假设出发 经过正确 的推理 导致矛盾 从而否定相反的假设 达到肯定原命题正确的一种方法 反证法可以分为归谬反证法 结论的反 面只有一种 与穷举反证法 结论的反面不只一种 用反证法证明一个命题的步骤 大体上分为 用反证法证明一个命题的步骤 大体上分为 1 1 反设 反设 2 2 归谬 归谬 3 3 结论 结论 反设是反证法的基础 为了正确地作出反设 掌握一些常用的互为否定的表述形式是有必要的 例如 是 不是 存在 不存在 平行于 不平行于 垂直于 不垂直于 等于 不等于 大 小 于 不大 小 于 都是 不都是 至少有一 个 一个也没有 至少有 n 个 至多有 n 一 1 个 至多有一个 至少有两个 唯一 至少有两个 归谬是反证法的关键 导出矛盾的过程没有固定的模式 但必须从反设出发 否则推导将成为无源之水 无本之 木 推理必须严谨 导出的矛盾有如下几种类型 与已知条件矛盾 与已知的公理 定义 定理 公式矛盾 与反设 矛盾 自相矛盾 8 8 等 等 面或体面或体 积法积法 平面 立体 几何中讲的面积 体积 公式以及由面积 体积 公式推出的与面积 体积 计算有关的 性质定理 不仅可用于计算面积 体积 而且用它来证明 计算 几何题有时会收到事半功倍的效果 运用面积 体积 关系来证明或计算几何题的方法 称为等 面或体 积法 它是几何中的一种常用方法 用归纳法或分析法证明几何题 其困难在添置辅助线 等 面或体 积法的特点是把已知和未知各量用面积 体积 公式联系起来 通过运算达到求证的结果 所以用等 面或体 积法来解几何题 几何元素之间关系变成数量之间的关 系 只需要计算 有时可以不添置补助线 即使需要添置辅助线 也很容易考虑到 9 9 几何变换法 几何变换法 在数学问题的研究中 常常运用变换法 把复杂性问题转化为简单性的问题而得到解决 所谓变换 是一个集合的任一元素到同一集合的元素的一个一一映射 中学数学中所涉及的变换主要是初等变换 有一些看来很 难甚至于无法下手的习题 可以借助几何变换法 化繁为简 化难为易 另一方面 也可将变换的观点渗透到中学数 学教学中 将图形从相等静止条件下的研究和运动中的研究结合起来 有利于对图形本质的认识 几何变换包括 几何变换包括 1 1 平移 平移 2 2 旋转 旋转 3 3 对称 对称 10 10 客观性题的解题方法客观性题的解题方法 选择题是给出条件和结论 要求根据一定的关系找出正确答案的一类题型 选择题的题型 构思精巧 形式灵活 可以比较全面地考察学生的基础知识和基本技能 从而增大了试卷的容量和知识覆盖面 填空 题是标准化考试的重要题型之一 它同选择题一样具有考查目标明确 知识复盖面广 评卷准确迅速 有利于考查学 生的分析判断能力和计算能力等优点 不同的是填空题未给出答案 可以防止学生猜估答案的情况 要想迅速 正确 地解选择题 填空题 除了具有准确的计算 严密的推理外 还要有解选择题 填空题的方法与技巧 下面通过实例介绍常用方法 下面通过实例介绍常用方法 1 1 直接推演法 直接推演法 直接从命题给出的条件出发 运用概念 公式 定理等进行推理或运算 得出结论 选择正确 答案 这就是传统的解题方法 这种解法叫直接推演法 2 2 验证法 验证法 由题设找出合适的验证条件 再通过验证 找出正确答案 亦可将供选择的答案代入条件中去验证 找出正确答案 此法称为验证法 也称代入法 当遇到定量命题时 常用此法 3 3 特殊元素法特殊元素法 用合适的特殊元素 如数或图形 代入题设条件或结论中去 从而获得解答 这方法叫特殊元素 法 4 4 排除 筛选法 排除 筛选法 对于正确答案有且只有一个的选择题 根据数学知识或推理 演算 把不正确的结论排除 余下的结论再经筛选 从而作出正确的结论的解法叫排除 筛选法 5 5 图解法 图解法 借助于符合题设条件的图形或图象的性质 特点来判断 作出正确的选择称为图解法 图解法是解 选择题常用方法之一 6 6 分析法 分析法 直接通过对选择题的条件和结论 作详尽的分析 归纳和判断 从而选出正确的结果 称为分析法 十 针对计算 巧算 方法针对计算 巧算 方法 律 加法交换律 A B B A 加法结合律 A B C A B C 精品文档 15欢迎下载 乘法交换律 A B B A 乘法结合律 A B C A B C 乘法分配律 A B A C D C D B 性质 减法性质 A B C A B C 交换性质 A B C A C B 除法性质 A B C A B C 乘法半交换性质 A B C A C B 以下是总复习要点以下是总复习要点 第第 1 1 课课 实数的有关概念实数的有关概念 考查重点 考查重点 1 有理数 无理数 实数 非负数概念 2 相反数 倒数 数的绝对值概念 3 在已知中 以非负数 a2 a a 0 之和为零作为条件 解决有关问题 a 实数的有关概念 1 实数的组成 正整数 整数零 负整数有理数有尽小数或无尽循环小数 正分数实数 分数 负分数 正无理数 无理数无尽不循环小数 负无理数 2 数轴 规定了原点 正方向和单位长度的直线叫做数轴 画数轴时 要注童上述规定的三要素缺一不可 实数与数轴上的点是一一对应的 数轴上任一点对应的数总大于这个点左边的点对应的数 3 相反数 实数的相反数是一对数 只有符号不同的两个数 叫做互为相反数 零的相反效是零 从数轴上看 互为相反数的两个数所对应的点关于原点对称 4 绝对值 从数轴上看 一个数的绝对值就是表示这个数的点与原点的距离 5 倒数 实数 a a 0 的倒数是 乘积为 1 的两个数 叫做互为倒数 零没有倒数 第第 2 2 课课 实数的运算实数的运算 考查重点 考查重点 1 1 考查近似数 有效数字 科学计算法 考查近似数 有效数字 科学计算法 2 2 考查实数的运算 考查实数的运算 3 3 计算器的使用 计算器的使用 实数的运算实数的运算 1 1 加法 加法 同号两数相加 取原来的符号 并把绝对值相加 异号两数相加 取绝对值较大的数的符号 并用较大的绝对值减去较小的绝对值 任何数与零相加等于原数 2 减法 a b a b 3 乘法 两数相乘 同号得正 异号得负 并把绝对值相乘 零乘以任何数 都得零 即 4 除法 5 乘方 0 0 0 0 aa a aa a a 1 个n n aaaa 0 1 b b a b a 0 为零或 异号 同号 ba baba

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论