




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数字推理题型的7种类型28种形式 数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。第一种情形-等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。、等差数列的常规公式。设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。例11,3,5,7,9,() A.7B.8 C.11D.13解析 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。故选C。、二级等差数列。是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列. 例2 2, 5, 10, 17, 26, ( ), 50 A.35B.33C.37D.36 解析相邻两位数之差分别为3, 5, 7, 9, 是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。、分子分母的等差数列。是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。例32/3,3/4,4/5,5/6,6/7,( )A、8/9B、9/10C、9/11D、7/8解析数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。故选D。、混合等差数列。是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。例41,3,3,5,7,9,13,15,( ),( )。A、1921B、1923C、2123 D、2730解析相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。提示:熟练掌握基本题型及其简单变化是保证数字推理题不丢分的关键。第二种情形-等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。5、等比数列的常规公式。设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。例5 12,4,4/3,4/9,( )A、2/9 B、1/9 C、1/27D、4/27解析很明显,这是一个典型的等比数列,公比为1/3。故选D。6、二级等比数列。是指等比数列的变式,相邻两项之比有着明显的规律性,往往构成等比数列。例64,6,10,18,34,( ) A、50 B、64 C、66 D、68解析 此数列表面上看没有规律,但它们后一项与前一项的差分别为2,4,6,8,16,是一个公比为2的等比数列,故括号内的值应为34+162=66 故选C。7、等比数列的特殊变式。例7 8,12,24,60,( )A、90B、120C、180D、240解析该题有一定的难度。题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的:3/2,4/2,5/2,因此,括号内数字应为606/2=180。故选C。此题值得再分析一下,相邻两项的差分别为4,12,36,后一个值是前一个值的3倍,括号内的数减去60应为36的3倍,即108,括号数为168,如果选项中没有180只有168的话,就应选168了。同时出现的话就值得争论了,这题只是一个特例。第三种情形混合数列式:是指一组数列中,存在两种以上的数列规律。8、双重数列式。即等差与等比数列混合,特点是相隔两项之间的差值或比值相等。 例826,11,31,6,36,1,41,( ) A、0B、-3C、-4 D、46 解析 此题是一道典型的双重数列题。其中奇数项是公差为5的等差递增数列,偶数项是公差为5的等差递减数列。故选C。9、混合数列。是两个数列交替排列在一列数中,有时是两个相同的数列(等差或等比),有时两个数列是按不同规律排列的,一个是等差数列,另一个是等比数列。例95,3,10,6,15,12,( ),( )A、2018B、1820C、2024 D、18 32 解析 此题是一道典型的等差、等比数列混合题。其中奇数项是以5为首项、公差为5的等差数列,偶数项是以3为首项、公比为2的等比数列。故选C。第四种情形四则混合运算:是指前两(或几)个数经过某种四则运算等到于下一个数,如前两个数之和、之差、之积、之商等于第三个数。10、加法规律。之一:前两个或几个数相加等于第三个数,相加的项数是固定的。 例11 2,4,6,10,16,( )A、26B、32C、35D、20 解析 首先分析相邻两数间数量关系进行两两比较,第一个数2与第二个数4之和是第三个数,而第二个数4与第三个数6之和是10。依此类推,括号内的数应该是第四个数与第五个数的和26。故选A。之二:前面所有的数相加等到于最后一项,相加的项数为前面所有项。例12 1,3,4, 8,16,() A、22 B、24C、28D、32解析这道题从表面上看认为是题目出错了,第二位数应是2,以为是等比数列。其实不难看出,第三项等于前两项之和,第四项与等于前三项之和,括号内的数应为前五项之和为32。故选D。11、减法规律。是指前一项减去第二项的差等于第三项。例13 25,16,9,7,( ),5A、8 B、2C、3D、6 解析 此题是典型的减法规律题,前两项之差等于第三项。故选B。12、加减混合:是指一组数中需要用加法规律的同时还要使用减法,才能得出所要的项。 例141,2,2,3,4,6,() A、7B、8C、9D、10 解析即前两项之和减去1等于第三项。故选C。13、乘法规律。 之一:普通常规式:前两项之积等于第三项。例15 3,4,12,48,( )A、96B、36C、192D、576 解析这是一道典型的乘法规律题,仔细观察,前两项之积等于第三项。故选D。 之二:乘法规律的变式:例162,4,12,48,()A、96B、120C、240D、480 解析每个数都是相邻的前面的数乘以自已所排列的位数,所以第5位数应是548=240。故选D。14、除法规律。 例1760,30,2,15,()A、5B、1C、1/5D、2/15 解析本题中的数是具有典型的除法规律,前两项之商等于第三项,故第五项应是第三项与第四项的商。故选D。15、除法规律与等差数列混合式。例183,3,6,18,( )A、36B、54C、72D、108解析数列中后个数字与前一个数字之间的商形成一个等差数列,以此类推,第5个数与第4个数之间的商应该是4,所以184=72。故选C。 思路引导:快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数。如果假设被否定,立刻换一种假设,这样可以极大地提高解题速度。第五种情形平方规律:是指数列中包含一个完全平方数列,有的明显,有的隐含。 16、平方规律的常规式。 例1949,64,91,( ),121A、98B、100C、108D、116解析这组数列可变形为72,82,92,( ),112,不难看出这是一组具有平方规律的数列,所以括号内的数应是102。故选B。17、平方规律的变式。 之一、n2-n 例200,3,8,15,24,()A、28B、32C、35D、40解析这个数列没有直接规律,经过变形后就可以看出规律。由于所给数列各项分别加1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62-1=35,其实就是n2-n。故选C。之二、n2+n例212,5,10,17,26,()A、43B、34C、35D、37解析这个数是一个二级等差数列,相邻两项的差是一个公差为2的等差数列,括号内的数是26=11=37。如将所给的数列分别减1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62+1=37,其实就是n2+n。故选D。之三、每项自身的平方减去前一项的差等于下一项。 例221,2,3,7,46,( ) A、2109B、1289C、322D、147解析 本数列规律为第项自身的平方减去前一项的差等于下一项,即12-0,22-1=3,32-2=7,72-3=46,462-7=2109,故选A。第六种情形立方规律:是指数列中包含一个立方数列,有的明显,有的隐含。16、立方规律的常规式: 例231/343,1/216,1/125,()A、1/36B、1/49C、1/64D、1/27 解析仔细观察可以看出,上面的数列分别是1/73,1/63,1/53的变形,因此,括号内应该是1/43,即1/64。故选C。17、立方规律的变式: 之一、n3-n例240,6,24,60,120,( )A、280B、320C、729D、336解析数列中各项可以变形为13-1,23-2,33-3,43-4,53-5,63-6,故后面的项应为73-7=336,其排列规律可概括为n3-n。故选D。之二、n3+n例252,10,30,68,( ) A、70B、90C、130D、225解析数列可变形为13+1,23+1,33+1,43+1,故第5项为53+=130,其排列规律可概括为n3+n。故选C。之三、从第二项起后项是相邻前一项的立方加1。例26-1,0,1,2,9,( ) A、11B、82C、729D、730解析从第二项起后项分别是相邻前一项的立方加1,故括号内应为93+1=730。故选D。 思路引导:做立方型变式这类题时应从前面几种排列中跳出来,想到这种新的排列思路,再通过分析比较尝试寻找,才能找到正确答案。第七种情形特殊类型:18、需经变形后方可看出规律的题型: 例27 1,1/16,(),1/256,1/625 A、1/27B、1/81C、1/100D、1/121解析 此题数列可变形为1/12,1/42,(),1/162,1/252,可以看出分母各项分别为1,4,(),16,25的平方,而1,4,16,25,分别是1,2,4,5的平方,由此可以判断这个数列是1,2,3,4,5的平方的平方,由此可以判断括号内所缺项应为1/(32)2=1/81。故选B。19、容易出错规律的题。例2812,34,56,78,()A、90B、100 C、910D、901 解析这道题表面看起来起来似乎有着明显的规律,12后是34,然后是56,78,后面一项似乎应该是910,其实,这是一个等差数列,后一项减去前一项均为22,所以括号内的数字应该是78+22=100。故选B。八大类数列及变式总结数字推理的题目通常状况下是给出一个数列,但整个数列中缺少一个项,要求仔细观察这个数列各项之间的关系,判断其中的规律。解题关键:1,培养数字、数列敏感度是应对数字推理的关键。2,熟练掌握各类基本数列。3,熟练掌握八大类数列,并深刻理解“变式”的概念。4,进行大量的习题训练,自己总结,再练习。下面是八大类数列及变式概念。例题是帮助大家更好的理解概念,掌握概念。虽然这些理论概念是从教材里得到,但是希望能帮助那些没有买到教材,那些只做大量习题而不总结的朋友。最后跟大家说,做再多的题,没有总结,那样是不行的。只有多做题,多总结,然后把别人的理论转化成自己的理论,那样做任何的题目都不怕了。谢谢!一、简单数列 自然数列:1,2,3,4,5,6,7, 奇数列:1,3,5,7,9, 偶数列:2,4,6,8,10, 自然数平方数列:1,4,9,16,25,36, 自然数立方数列:1,8,27,64,125,216, 等差数列:1,6,11,16,21,26, 等比数列:1,3,9,27,81,243,二、等差数列1, 等差数列:后一项减去前一项形成一个常数数列。例题:12,17,22,27,(),37解析:17-12=5,22-17=5,2, 二级等差数列:后一项减去前一项形成一个新的数列是一个等差数列。例题1: 9,13,18,24,31,()解析:13-9=4,18-13=5,24-18=6,31-24=7,例题2.:66,83,102,123,()解析:83-66=17,102-83=19,123-102=21,3,二级等差数列变化:后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。例题1: 0,1,4,13,40,()解析:1-0=1,4-1=3,13-4=9,40-13=27,公比为3的等比数列例题2: 20,22,25,30,37,()解析:22-20=2,25-22=3,30-25=5,37-30=7,.二级为质数列4,三级等差数列及变化:后一项减去前一项形成一个新的数列,再在这个新的数列中,后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。例题1: 1,9,18,29,43,61,()解析:9-1=8,18-9=9,29-18=11,43-29=14,61-43=18,二级特征不明显 9-8=1,11-9=2,14-11=3,18-14=4,三级为公差为1的等差数列例题2.:1,4,8,14,24,42,()解析:4-1=3,8-4=4,14-8=6,24-14=10,42-24=18,二级特征不明显 4-3=1,6-4=2,10-6=4,18-10=8,三级为等比数列例题3:(),40,23,14,9,6解析:40-23=17,23-14=9,14-9=5,9-6=3,二级特征不明显 17-9=8,9-5=4,5-3=2,三级为等比数列三、等比数列1,等比数列:后一项与前一项的比为固定的值叫做等比数列例题:36,24,()32/3,64/9解析:公比为2/3的等比数列。2,二级等比数列变化:后一项与前一项的比所得的新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。例题1:1,6,30,(),360解析:6/1=6,30/6=5,()/30=4,360/()=3,二级为等差数列例题2:10,9,17,50,()解析:1*10-1=9,2*9-1=18,3*17-1=50,例题3:16,8,8,12,24,60,()解析:8/16=0.5,8/8=1,12/8=1.5,24/12=2,60*24=2.5,二级为等差数列例题4:60,30,20,15,12,()解析:60/30=2/1,30/20=3/2,20/15=4/3,15/12=5/4,重点:等差数列与等比数列是最基本、最典型、最常见的数字推理题型。必须熟练掌握其基本形式及其变式。四、和数列1,典型(两项求和)和数列:前两项的加和得到第三项。例题1:85,52,(),19,14解析:85=52+(),52=()+19,()=19+14,例题2:17,10,(),3,4,-1解析:17-10=7,10-7=3,7-3=4,3-4=-1,例题3:1/3,1/6,1/2,2/3,()解析:前两项的加和得到第三项。2,典型(两项求和)和数列变式:前两项的和,经过变化之后得到第三项,这种变化可能是加、减、乘、除某一常数;或者是每两项的和与项数之间具有某种关系。例题1:22,35,56,90,(),234解析:前两项相加和再减1得到第三项。例题2:4,12,8,10,()解析:前两项相加和再除2得到第三项。例题3:2,1,9,30,117,441,()解析:前两项相加和再乘3得到第三项。3,三项和数列变式:前三项的和,经过变化之后得到第四项,这种变化可能是加、减、乘、除某一常数;或者是每两项的和与项数之间具有某种关系。例题1:1,1,1,2,3,5,9,()解析:前三项相加和再减1得到第四项。例题2:2,3,4,9,12,25,22,()解析:前三项相加和得到自然数平方数列。例题:-4/9,10/9,4/3,7/9,1/9,()解析:前三项相加和得到第四项。五、积数列1,典型(两项求积)积数列:前两项相乘得到第三项。例题:1,2,2,4,(),32解析:前两项相乘得到第三项。2,积数列变式:前两项相乘经过变化之后得到第三项,这种变化可能是加、减、乘、除某一常数;或者是每两项的乘与项数之间具有某种关系。例题1:3/2,2/3,3/4,1/3,3/8,()解析:两项相乘得到1,1/2,1/4,1/8,例题2:1,2,3,35,()解析:前两项的积的平方减1得到第三项。例题3:2,3,9,30,273,()解析:前两项的积加3得到第三项。六、平方数列1,典型平方数列(递增或递减)例题:196,169,144,(),100解析:14立方,13立方,2,平方数列变式:这一数列特点不是简单的平方或立方数列,而是在此基础上进行“加减乘除”的变化。例题1:0,5,8,17,(),37解析:0=12-1,5=22+1,8=32-1,17=42+1,()=52-1,37=62+1例题2:3,2,11,14,27,()解析:12+2,22-2,32+2,42-2,52+2,例题3:0.5,2,9/2,8,()解析:等同于1/2,4/2,9/2,16/2,分子为12,22,32,42,例题4:17,27,39,(),69解析:17=42+1,27=52+2,39=62+3,3, 平方数列最新变化-二级平方数列例题1:1,4,16,49,121,()解析:12,22,42,72,112,二级不看平方 1,2,3,4,三级为自然数列例题2:9,16,36,100,()解析:32,42,62,102,二级不看平方 1,2,4,三级为等比数列七、立方数列1,典型立方数列(递增或递减):不写例题了。2,立方数列变化:这一数列特点不是简单的立方数列,而是在此基础上进行“加减乘除”的变化。例题1:0,9,26,65,124,()解析:项数的立方加减1的数列。例题2:1/8,1/9,9/64,(),3/8解析:各项分母可变化为2,3,4,5,6的立方,分之可变化为1,3,9,27,81例题3:4,11,30,67,()解析:各项分别为立方数列加3的形式。例题4:11,33,73,(),231解析:各项分别为立方数列加3,6,9,12,15的形式。例题5:-26,-6,2,4,6,()解析:(-3)3+1,(-2)3+2,(-1)3+3,(0)3+4,(1)3+5,八、组合数列1,数列间隔组合:两个数列(七种基本数列的任何一种或两种)进行分隔组合。例题1:1,3,3,5,7,9,13,15,(),()解析:二级等差数列1,3,7,13,和二级等差数列3,5,9,15,的间隔组合。例题2:2/3,1/2,2/5,1/3,2/7,()解析:数列2/3,2/5,2/7和数列1/2,1/3,的间隔组合。2,数列分段组合:例题1:6,12,19,27,33,(),48解析: 6 7 8 6 () 8例题2:243,217,206,197,171,(),151解析: 26 11 9 26 () 9特殊组合数列:例题1:1.01,2.02,3.04,5.08,()解析:整数部分为和数列1,2,3,5,小数部分为等比数列0.01,0.02,0.04,九、其他数列1,质数列及其变式:质数列是一个非常重要的数列,质数即只能被1和本身整除的数。例题1:4,6,10,14,22,()解析:各项除2得到质数列2,3,5,7,11,例题2:31,37,41,43,(),53解析:这是个质数列。2,合数列:例题:4,6,8,9,10,12,()解析:和质数列相对的即合数列,除去质数列剩下的不含1的自然数为合数列。3,分式最简式:例题1:133/57,119/51,91/39,49/21,(),7/3解析:各项约分最简分式的形式为7/3。例题2:105/60,98/56,91/52,84/48,(),21/12解析:各项约分最简分式的形式为7/4。等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b深一点模式,各数之间的差有规律,如 1、2、5、10、17。它们之间的差为1、3、5、7,成等差数列。这些规律还有差之间成等比之类。B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。 3、看各数的大小组合规律,做出合理的分组。如 7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。 4、如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数; 7+1410+119+12。首尾关系经常被忽略,但又是很简单的规律。B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。 5、各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是23-2=6、33-3=24、43-4=60、53-5=120、63-6=210。这组数比较巧的是都是6的倍数,容易导入歧途。 6)看大小不能看出来的,就要看数的特征了。如21、31、47、56、69、72,它们的十位数就是递增关系,如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上答:256,269,286,302,(),2+5+6=132+6+9172+8+6163+0+25,256+13269269+17286286+16302 下一个数为302+5307。 7)再复杂一点,如 0、1、3、8、21、55,这组数的规律是b*3-a=c,即相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度生态围墙施工与节能改造承包合同范本
- 2025版铁矿石国际贸易结算合同
- 2025年度石材材料市场调研与采购合同
- 2025版企业员工职业规划与团队协作能力培训合同
- 2025版品牌皮鞋品牌授权区域市场推广费用结算合同
- 2025年度水电安装工程安全管理承包合同
- 2025版智能家居控制系统购买及售后服务合同
- 2025版事业单位借调人员管理与服务规范及薪酬福利合同
- 2025版石子包销合同范本(适用环保工程)
- 2025年度智能化企业出纳岗位聘用协议
- 餐饮店食品经营操作流程4篇
- 2025年黑龙江、吉林、辽宁、内蒙古高考生物真题试卷(解析版)
- 药物治疗监测试题及答案
- GB/T 45654-2025网络安全技术生成式人工智能服务安全基本要求
- T/CAPA 009-2023面部埋线提升技术操作规范
- 塑胶料品质协议书
- 2025届江苏省苏州市高三9月期初阳光调研-语文试卷(含答案)
- 旅行地接协议书
- DB3707T 120-2024无特定病原凡纳滨对虾种虾循环水养殖技术规范
- 安全课件小学
- 租房协议书合同txt
评论
0/150
提交评论