




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数海冲浪-轨迹方程的求法轨迹方程求法探究 求轨迹方程的方法有多种,常用的有直接法、定义法、代入法、参数法,向量法,待定系数法和交轨法一、直接法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直接法例1一动点与原点的边线的斜率等于这个动点与原点的距离,求此动点轨迹方程。解析:设P(x,y),则,都可表示出来,从而据题设可求得动点的轨迹方程。解:设动点P(x,y),则,据题意可得: 两边平方化简得: (xyo) 故所求得动点的轨迹方程为(xyo)变式: 已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程。解:设点P的坐标为(x,y),则由题意可得。(1)当x3时,方程变为,化简得。(2)当x3时,方程变为,化简得。故所求的点P的轨迹方程是或。二、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法 例2 已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。解:设动圆的半径为R,由两圆外切的条件可得:,。动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,c=4,a=2,b2=12。故所求轨迹方程为。例3、动圆M与圆C1:(x+1)2+y2=36内切,与圆C2:(x-1)2+y2=4外切,求圆心M的轨迹方程。分析:作图时,要注意相切时的“图形特征”:两个圆心与切点这三点共线(如图中的A、M、C共线,B、D、M共线)。列式的主要途径是动圆的“半径等于半径”(如图中的)。解:如图, (*)点M的轨迹为椭圆,2a=8,a=4,c=1,b2=15轨迹方程为点评:得到方程(*)后,应直接利用椭圆的定义写出方程,而无需再用距离公式列式求解,即列出,再移项,平方,相当于将椭圆标准方程推导了一遍,较繁琐!例4、ABC中,B(-5,0),C(5,0),且sinC-sinB=sinA,求点A的轨迹方程。分析:由于sinA、sinB、sinC的关系为一次齐次式,两边乘以2R(R为外接圆半径),可转化为边长的关系。解:sinC-sinB=sinA 2RsinC-2RsinB=2RsinA即 (*)点A的轨迹为双曲线的右支(去掉顶点)2a=6,2c=10a=3, c=5, b=4所求轨迹方程为 (x3)点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)练习:1、若点P到点F(4,0)的距离比它到直线x+5=0的距离小1,则P点的轨迹方程是 ( )A、y2=-16x B、y2=-32x C、y2=16x D、y2=32x解:C点P到F与到x+4=0等距离,P点轨迹为抛物线 p=8开口向右,则方程为y2=16x,选C2、已知ABC的三边AB、BC、AC的长依次成等差数列,且,点B、C的坐标分别为(-1,0),(1,0),则顶点A的轨迹方程是( )A、 B、 C、 D、2、D,且点A的轨迹为椭圆在y轴右方的部分、又A、B、C三点不共线,即y0,故选D。3、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是 ( )A、 B、C、 D、4、A设中心为(x,y),则另一焦点为(2x-1,2y),则原点到两焦点距离和为4得, 又ca,(x-1)2+y2)7、y2=x+2(x2)设A(x1,y1),B(x2,y2),AB中点M(x,y),则,即y2=x+2又弦中点在已知抛物线内P,即y22x,即x+223代入法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法 例3已知A(2,0),B,点C在直线上移动,求ABC重心G的轨迹方程。分析:重心G的运动是由点C在直线上运动引起的,因而设G(x,y),再用 表示出点C的坐标,就可以建立起点G的轨迹方程。解:设G(x,y),C G是ABC的重心,且A(2,0),B, 即 又C 在直线上 ,即 化简得 A(2,0),B,共线的条件是, 即解方程组 得故方程中含有轨迹外的一个点,应删除。从而ABC重心G的轨迹方程是点评:本题中的动点C、G可分别称为主动点与从动点,为求从动点G的轨迹,应设出两个点坐标,在根据主动点有从动点存在的关系,建立两动点坐标之间的关系式。用从动点坐标表示出主动点坐标,代入主动点坐标满足的方程,得动点G的轨迹方程。四、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法 例4A、B是抛物线上的两动点,且于P,求动点P的轨迹。解法一 设A(x1,y1),B(x2,y2),M(x,y) (x0)直线AB的方程为x=my+a由OMAB,得m=由y2=4px及x=my+a,消去x,得y24pmy4pa=0所以y1y2=4pa, x1x2=所以,由OAOB,得x1x2 =y1y2所以故x=my+4p,用m=代入,得x2+y24px=0(x0)故动点M的轨迹方程为x2+y24px=0(x0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点 解法二 设OA的方程为,代入y2=4px得则OB的方程为,代入y2=4px得AB的方程为,过定点,由OMAB,得M在以ON为直径的圆上(O点除外)故动点M的轨迹方程为x2+y24px=0(x0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点 解法三 设M(x,y) (x0),OA的方程为,代入y2=4px得则OB的方程为,代入y2=4px得由OMAB,得M既在以OA为直径的圆 上,又在以OB为直径的圆 上(O点除外),+得 x2+y24px=0(x0)故动点M的轨迹方程为x2+y24px=0(x0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点 变式: 过原点作直线l和抛物线交于A、B两点,求线段AB的中点M的轨迹方程。解:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。把它代入抛物线方程,得。因为直线和抛物线相交,所以0,解得。设A(),B(),M(x,y),由韦达定理得。由消去k得。又,所以。点M的轨迹方程为。五、待定系数法例5求与双曲线有共同渐进线,且过点的双曲线的标准方程。解:双曲线方程可设为,将点的坐标代入得: 故所求双曲线的方程为变式: 已知双曲线中心在原点且一个焦点为F(,0),直线y=x1与其相交于M、N两点,MN中点的横坐标为,求此双曲线方程。解:设双曲线方程为。将y=x1代入方程整理得。由韦达定理得。又有,联立方程组,解得。此双曲线的方程为。6交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法例6已知经过点P(4,0)的直线,经过Q(-1,2)的直线为,若,求与交点S的轨迹方程。分析:设、的斜率为、,则可由可求之。解:设动点S的坐标为(x,y),设、的斜率为、, 由有, 得: 当或时式有解。 S的轨迹方程为:学生巩固练习 1 已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( )A 圆B 椭圆 C 双曲线的一支D 抛物线2 设A1、A2是椭圆=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为( )A B C D 3 ABC中,A为动点,B、C为定点,B(,0),C(,0),且满足条件sinCsinB=sinA,则动点A的轨迹方程为_ 4 高为5 m和3 m的两根旗杆竖在水平地面上,且相距10 m,如果把两旗杆底部的坐标分别确定为A(5,0)、B(5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_ 5 已知A、B、C是直线l上的三点,且|AB|=|BC|=6,O切直线l于点A,又过B、C作O异于l的两切线,设这两切线交于点P,求点P的轨迹方程 6 双曲线=1的实轴为A1A2,点P是双曲线上的一个动点,引A1QA1P,A2QA2P,A1Q与A2Q的交点为Q,求Q点的轨迹方程 7 已知双曲线=1(m0,n0)的顶点为A1、A2,与y轴平行的直线l交双曲线于点P、Q (1)求直线A1P与A2Q交点M的轨迹方程;(2)当mn时,求所得圆锥曲线的焦点坐标、准线方程和离心率 8 已知椭圆=1(ab0),点P为其上一点,F1、F2为椭圆的焦点,F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R (1)当P点在椭圆上运动时,求R形成的轨迹方程;(2)设点R形成的曲线为C,直线l y=k(x+a)与曲线C相交于A、B两点,当AOB的面积取得最大值时,求k的值 参考答案 1 解析 |PF1|+|PF2|=2a,|PQ|=|PF2|,|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆 答案 A2 解析 设交点P(x,y),A1(3,0),A2(3,0),P1(x0,y0),P2(x0,y0)A1、P1、P共线,A2、P2、P共线,解得x0=答案 C3 解析 由sinCsinB=sinA,得cb=a,应为双曲线一支,且实轴长为,故方程为 答案 4 解析 设P(x,y),依题意有,化简得P点轨迹方程为4x2+4y285x+100=0 答案 4x2+4y285x+100=05 解 设过B、C异于l的两切线分别切O于D、E两点,两切线交于点P 由切线的性质知 |BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|=|BA|+|CE|=|AB|+|CA|=6+12=186=|BC|,故由椭圆定义知,点P的轨迹是以B、C为两焦点的椭圆,以l所在的直线为x轴,以BC的中点为原点,建立坐标系,可求得动点P的轨迹方程为=1(y0)6 解 设P(x0,y0)(xa),Q(x,y) A1(a,0),A2(a,0) 由条件而点P(x0,y0)在双曲线上,b2x02a2y02=a2b2 即b2(x2)a2()2=a2b2化简得Q点的轨迹方程为 a2x2b2y2=a4(xa) 7 解 (1)设P点的坐标为(x1,y1),则Q点坐标为(x1,y1),又有A1(m,0),A2(m,0),则A1P的方程为 y=A2Q的方程为 y= 得 y2= 又因点P在双曲线上,故代入并整理得=1 此即为M的轨迹方程 (2)当mn时,M的轨迹方程是椭圆 ()当mn时,焦点坐标为(,0),准线方程为x=,离心率e=;()当mn时,焦点坐标为(0,),准线方程为y=,离心率e= 8 解 (1)点F2关于l的对称点为Q,连接PQ,F2PR=QPR,|F2R|=|QR|,|PQ|=|PF2|又因为l为F1PF2外角的平分线,故点F1、P、Q在同一直线上,设存
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计施工公司管理制度
- 诊所档案信息管理制度
- 诊所阳性患者管理制度
- 财富中心薪酬管理制度
- 账户交易权限管理制度
- 货架安装安全管理制度
- 货车进出小区管理制度
- 2025年中国个人交通工具行业市场全景分析及前景机遇研判报告
- 景区赔偿协议书范本
- 初中古诗文赏析:从名篇到实践
- 《松果体细胞瘤》课件
- 《软件安全测试》课件
- ZZ022酒店服务赛项规程
- 三年级上册数学教案-第七单元 《分数的初步认识》 |苏教版
- 2024-2030年中国小型涡喷发动机行业竞争格局展望及投资策略分析报告
- 《酒店营销推广方案》课件
- 大学生积极心理健康教育知到智慧树章节测试课后答案2024年秋运城职业技术大学
- 危险化学品安全管理领导小组及工作职责
- 工程建筑劳务合作协议范本
- 房屋优先购买权申请书
- 留学销售话术培训
评论
0/150
提交评论