散热器检测的系统新控制策略试验研究.doc_第1页
散热器检测的系统新控制策略试验研究.doc_第2页
散热器检测的系统新控制策略试验研究.doc_第3页
散热器检测的系统新控制策略试验研究.doc_第4页
散热器检测的系统新控制策略试验研究.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

散热器检测系统新控制策略的试验研究摘要: 为保证检测的可靠性和精度,散热器检测台要求散热器进口水温度精确控制在0.2的波动范围内,而测试间温度波动在0.1内。因为不同散热器的流量不同,原有的PID控制 方法 无法在大流量范围内保持其鲁棒性。本文基于对系统扰动的定量 分析 ,建立了整个系统的动态模型。根据系统特殊的工作模式,结合反馈和前馈控制,作者提出了一种新的控制策略。数值模拟显示了它的有效性;实际运行中新策略调试简单,控制精度非常高,无需流量测点。而且稳定速度和鲁棒性很好,尤其对于特别大或特别小的流量效果更为明显,从而大大提高了系统的检测能力,并显著降低了电耗。此外,文章对新旧控制方法进行了比较,并提出了针对散热器检测系统的一般控制策略,并用于指导系统设计。 关键词: 散热器检测; 控制策略;反馈控制;前馈控制1 散热器检测系统 散热器检测的主要任务是保持散热器水流量一定时,在高中低温三种工况下分别测量其进出口水温和周围空气温度,由此 计算 并拟合出散热量的计算公式。测量的准确性主要取决于上述三个参数的控制精度,国家散热器检测标准1要求把进口水温度的波动控制在0.2的范围内,而散热器所在检测小室的空气温度要控制在0.1内。高中低三个工况下的水温要分别维持在950.2,750.2和550.2;空气温度则为180.1。这样的精度要求是很高的。系统如图1所示。供水温调节系统包括一次和二次两个加热水箱。一次加热器把流出散热器的低温水加热到比较高的温度,二次加热器将水加热到最终温度。散热器所在小室为铁壳,而小室所在房间绝热。铁壳与房间内的环境用通过蒸发器和加热器的送风来控制,调节加热器功率可改变送风温度,从而将散热器周围空气温度维持在要求值。2 原有控制方案及存在的 问题 原有控制系统根据一次加热水箱的出口水温通断控制一次加热丝,使其维持在比工况设定值低5的温度上下波动;而二次加热丝依据散热器的入口水温实施PID调节,最终将水温控制在设定值0.2的范围内。空气系统根据小室温度PID调节空气加热丝的加热量,将其调整到180.1。这一方法,能把很好地控制小室空气温度。对于流量适中的散热片,也能将供水温度控制在0.2范围内的目标。但当换上流量很小或者很大的散热器时,供水温度难以稳定,无法完成测量。这严重限制了散热器检测室的检测能力。虽然经过反复的参数调试,问题仍然没有得到解决。3 系统分析 对于散热器检测台来说,散热片最小流量值为20Kg/hr,最大可达200Kg/hr,流量变化比达到10。一组PID参数值很难在如此大流量范围变化时保持鲁棒性。加上原控制系统中没有流量测点,无法实现按流量变化调节PID参数的算法,所以导致流量较大和较小的散热器无法稳定。而且多组PID参数的调试工作量很大,这也直接降低了该方法的实用性。为了进一步分析问题所在并找到合理的解决方法,我们重点分析了水系统中的调温设备加热箱。如图2所示,因为一二次加热箱不大,可以采用集总参数法。设加热丝在单位时间内产生的热量为 ,水的比热为 ,流量为 ,箱内水质量为 ,入口低温水温度为 ,出口高温水温度为 ,加热箱对周围环境散热为 。因为两个加热箱都做了很好的保温,近似将 视为0,可列微分方程如下:(1)其中 是主要扰动, 是调节手段,而 则为输出量。列出传递函数2可得:(2)由特征方程的根可知,微分方程的通解在静态时趋于0;因为非周期函数可以看作是幅值无穷小而具有一切频率成分的无穷多个谐波之和,所以将入口水温 作傅里叶变换后,对于输入量的每项谐波,输出量都有相同频率的谐波与之对应,出口温度也是由这无穷多个谐波叠加而成。输入输出量中的同频率谐波均为正弦函数,可用复数符号来表示,可令:(3)为扰动通道的幅频特性函数,而其幅值特性函数为:(4)由此可见,对于特定频率的入口水温扰动,当流量一定时,如果恰当选择 值,可以实现对入口温度的波幅的缩小,从而可将出口温度的波幅限制在我们所需的范围内。在散热器检测系统中,加热器容积约为100升,按照最大流量200 Kg/hr计算, 1800。而入口水温波动的频率不高,一般周期 为10分钟,可得:。所以,如果恒定加热丝的加热量后,要使出水口温度稳定在0.2内,只要进口水温在3.8内波动即可。因为对一次加热器实行通断控制很容易将一次出水温度维持3.8甚至更小的的波幅内,这样的热水进入二次加热器后,再利用上面的特性即可实现对供水温度的精确控制。另外,水系统还用一台冷水机组将散热片出口的高温水降至常温,从而引入检测室内的小水流量计,测定流量。水冷机组根据被冷却出水温度启停。对于水系统来说,这是一个主要的扰动。但是因为对于每一工况,散热器出口水温和过冷水机组后的水温基本不变,所以这一部分冷负荷可以采用前馈思想,根据不同的工况由二次加热器给定值补偿,从而进一步减小供水温度的静差,保证将供水温度严格控制在设定值0.2的范围内。4 模拟和实验 数据 上面的 理论 推导和结论,同时得到了数值模拟和实际运行数据的支持。图3所示为Matlab对稳定后的加热器进出口水温的模拟3。虚线进口水温波动线是幅值为3.8的正弦曲线,当加热量为定值时,代表出水温度的实线的波动范围被控制在了0.2内。这很好了证明了理论分析的正确性。另外,在流量为150kg/hr时,用上面的逻辑控制检测系统运行稳定后,现场用惠普数采仪每隔10秒对一次加热器出口水温和散热器进口水温进行采集,分别绘制温度图如下:从图中看出,一次加热器出口水温度的波幅约为0.4,当二次加热量控制为定值时,散热器入口温度的波动幅度只有0.03,远远超过了国家标准要求的精度。当流量在大范围内改变时,系统同样能很好地稳定,所以数值模拟和实验数据都证明了上述控制方法的有效性。5 总结 和通用控制策略的提出 散热器检测台的风系统一旦设计完成后,运行状态下的风量都一定,不随散热器工况的切换而变化,所以只要PID控制参数在调试阶段确定好,一般不会出现控制不稳的情况;但不同散热片要求的水流量不同使得时间常数值 变化剧烈,改变了系统特性。在没有流量测点的情况下,一般的PID参数都是针对中等流量的散热片整定得到的,所以在检测流量特大和特小的散热器时,难免会发生无法控制的情况。 针对类似的散热器检测水系统,上面的控制策略不仅调试简单,避免了繁琐的PID参数调节过程,调节精度很高,而且大流量范围内的鲁棒性好,无需增加流量测量装置。控制策略可以概括如下:二次加热器采用前馈控制,根据不同工况补偿冷水机组带走的冷负荷,但对每一工况的加热量为定值; 一次加热器采用反馈控制,根据当前出水温度值合理给定温度高低限和间断投入的热量,保证适当的一次水出口温度的波动幅值和频率。 同时,从控制角度又能对类似系统的设计提出下面的指导,即:依据流量 的范围确定一二次加热水箱的蓄水量 ,一般来说应该选的稍大一些,以突出其对温度波动的减幅作用; 根据 值合理选择加热器的功率,尤其对一次加热器,其总

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论