排列组合算例、讲解整理_第1页
排列组合算例、讲解整理_第2页
排列组合算例、讲解整理_第3页
排列组合算例、讲解整理_第4页
排列组合算例、讲解整理_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例1. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢? 分析:1.实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。因而有=360种。 2.先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种, 共=120种。 例25男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法? 分析:首先不考虑男生的站位要求,共A(9,9)种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。因而有=9876=3024种。 若男生从右至左按从高到矮的顺序,只有一种站法, 同理也有3024种,综上,有6048种。 例3. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法? 分析:先认为三个红球互不相同,共A(5,5)=120种方法。 而由于三个红球所占位置相同的情况下,共A(3,3)=6变化,因而共A(5,5)/A(3,3)=20种。 公式P是指排列,从N个元素取R个进行排列(即排序)。(P是旧用法,现在教材上多用A,Arrangement) 公式C是指组合,从N个元素取R个,不进行排列(即不排序)。 例4. 从1、2、3、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有_个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差, 2b=a+c, 可知b由a,c决定, 又 2b是偶数, a,c同奇或同偶,即:从1,3,5,19或2,4,6,8,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例5. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。 (二)每一步是向上还是向右,决定了不同的走法。 (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数, 本题答案为:=56。 2注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合 例6在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有_种。 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换 ,共12种。 例7从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有_。 (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。 (一)从6双中选出一双同色的手套,有6种方法; (二)从剩下的十只手套中任选一只,有10种方法。 (三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法; (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。 例8身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_。 分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有=90种。 例9在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法? 分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。 以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。 第一类:这两个人都去当钳工,有种; 第二类:这两人有一个去当钳工,有种; 第三类:这两人都不去当钳工,有种。 因而共有185种。 例10现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数? 分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。 抽出的三数含0,含9,有种方法; 抽出的三数含0不含9,有种方法; 抽出的三数含9不含0,有种方法; 抽出的三数不含9也不含0,有种方法。 又因为数字9可以当6用,因此共有2(+)+=144种方法。 例11停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是_种。 分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有种停车方法。 3特殊元素,优先处理;特殊位置,优先考虑 例12六人站成一排,求 (1)甲不在排头,乙不在排尾的排列数 (2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数 分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。 第一类:乙在排头,有种站法。 第二类:乙不在排头,当然他也不能在排尾,有种站法, 共+种站法。 (2)第一类:甲在排尾,乙在排头,有种方法。 第二类:甲在排尾,乙不在排头,有种方法。 第三类:乙在排头,甲不在排头,有种方法。 第四类:甲不在排尾,乙不在排头,有种方法。 共+2+=312种。 例13对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能? 分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。 第一步:第五次测试的有种可能; 第二步:前四次有一件正品有中可能。 第三步:前四次有种可能。 共有种可能。 例1510个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法? 分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式。因而共36种。 例16 用数字0,1,2,3,4,5组成没有重复数字的四位数, (1)可组成多少个不同的四位数? (2)可组成多少个不同的四位偶数? (3)可组成多少个能被3整除的四位数? 分析:(1)有A(6,4)-A(5,4)=240个。 (2)分为两类:0在末位,则有A(5,3)=60种:0不在末位,则有C(2,1)A(5,3)-C(2,1)A(4,2)=96种。 共60+96=156种。 (3)先把四个相加能被3整除的四个数从小到大列举出来,即先选 0,1,2,3 0,1,3,5 0,2,3,4 0,3,4,5 1,2,4,5 它们排列出来的数一定可以被3整除,再排列,有:4A(4,4)-A(3,3)+A(4,4)=96种。 例17分组问题 5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有多少种? 分析:(一)先把5个学生分成二人,一人,一人,一人各一组。 其中涉及到平均分成四组,有C(4,3)=4种分组方法。 可以看成4个板三个板不空的隔板法。 (二)再考虑分配到四个不同的科技小组,有A(4,4)=24种, 由(一)(二)可知,共424=96种例18 (1)设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入这五个盒子内,要求每个盒内放一个球,并且恰好有两个球的编号与盒子的编号相同,这样的投放方法的总数为 ;(2)四个不同的小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法共有 种解(1)第一步:投放2个球,使其编号与盒子编号相同,有种投法;第二步:投入其余3个球,以第一步的投法是1,2号球投入1,2号盒子内为例,其余3个球由于不能再出现球号与盒号相同的投法,如框图所示有2种投法345345综上可知,符合题意的投放方法共有220种(2)第一步:取出两个小球(种取法)合成一个“元素”,与另外两个球合成三个“元素”;第二步:将3个元素放入4个盒中的3个盒子,每个盒子放一个元素,形成一个空盒(种放法),故符合题意的放法共有144种评述 这是一组具有一定综合性的计数问题,应当注意,第(1)题如果判定第二步余下3球可任意放入余下3 个盒子,列出的算式,就会出错例19首先明确任务的意义例19. 从1、2、3、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有多少个? 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差, 2b=a+c, 可知b由a,c决定, 又 2b是偶数, a,c同奇或同偶,即:分别从1,3,5,19或2,4,6,8,20这十个数中选出两个数进行排列,由此就可确定等差数列,A(10,2)*2=90*2,因而本题为180。 例20. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入: (一)从M到N必须向上走三步,向右走五步,共走八步; (二)每一步是向上还是向右,决定了不同的走法; (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右; 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数。 本题答案为:C(8,3)=56。 例21分析是分类还是分步,是排列还是组合注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合。 例21在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有多少种? 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有1种选择, 同理A、B位置互换 ,共12种。 例22从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有多少种? (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。 (一)从6双中选出一双同色的手套,有6种方法; (二)从剩下的十只手套中任选一只,有10种方法。 (三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法; (四)由于选取与顺序无关,因(二)(三)中的选法重复一次,因而共240种。 或分步 (1)从6双中选出一双同色的手套,有C(1,6)=6种方法 (2)从剩下的5双手套中任选两双,有C(2,5)=10种方法 (3)从两双中手套中分别拿两只手套,有C(1,2)C(1,2)=4种方法。 同样得出共(1)(2)(3)=240种。 例23身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_。 分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有C(6,2)C(4,2)C(2,2)=90种。 例24在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法? 分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。 以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。 第一类:这两个人都去当钳工,C(2,2)C(5,2)C(4,4)=10种; 第二类:这两人有一个去当钳工,C(2,1)C(5,3)C(5,4)=100种; 第三类:这两人都不去当钳工,C(5,4)C(6,4)=75种。 因而共有185种。 例25现有印着0,1,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数? 分析:有同学认为只要把0,1,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。 抽出的三数含0,含9,有32种方法; 抽出的三数含0不含9,有24种方法; 抽出的三数含9不含0,有72种方法; 抽出的三数不含9也不含0,有24种方法。 因此共有32+24+72+24=152种方法。 例26停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法有多少种? 分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有A(9,8)=362880种停车方法。 例27特殊优先特殊元素,优先处理;特殊位置,优先考虑 。 例27六人站成一排,求 (1)甲、乙即不再排头也不在排尾的排法数 (2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数 分析:(1)按照先排出首位和末尾再排中间四位分步计数 第一类:排出首尾和末尾、因为甲乙不再首尾和末尾,那么首尾和末尾实在其它四位数选出两位进行排列、一共有A(4,2)=12种; 第二类:由于六个元素中已经有两位排在首尾和末尾,因此中间四位是把剩下的四位元素进行顺序排列, 共A(4,4)=24种; 根据乘法原理得即不再排头也不在排尾数共1224=288种。 (2)第一类:甲在排尾,乙在排头,有A(4,4)种方法。 第二类:甲在排尾,乙不在排头,有3A(4,4)种方法。 第三类:乙在排头,甲不在排尾,有3A(4,4)种方法。 第四类:甲不在排尾也不再排头,乙不在排头也不再排尾,有6A(4,4)种方法(排除相邻)。 共A(4,4)+3A(4,4)+3A(4,4)+6A(4,4)=312种。 例28对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能? 分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。 第一步:第五次测试的有C(4,1)种可能; 第二步:前四次有一件正品有C(6,1)中可能。 第三步:前四次有A(4,4)种可能。 共有576种可能。 例29捆绑与插空例11. 8人排成一队 (1)甲乙必须相邻 (2)甲乙不相邻 (3)甲乙必须相邻且与丙不相邻 (4)甲乙必须相邻,丙丁必须相邻 (5)甲乙不相邻,丙丁不相邻 分析:(1)甲乙必须相邻,就是把甲乙 捆绑(甲乙可交换) 和7人排列A(7,7)2 (2)甲乙不相邻,A(8,8)-A(7,7)2。 (3)甲乙必须相邻且与丙不相邻,先求甲乙必须相邻且与丙相邻A(6,6)22 甲乙必须相邻且与丙不相邻A(7,7)2-A(6,6)22 (4)甲乙必须相邻,丙丁必须相邻A(6,6)22 (5)甲乙不相邻,丙丁不相邻,A(8,8)-A(7,7)22+A(6,6)22 例30. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况? 分析: 连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即A(5,2)。 例31. 马路上有编号为l,2,3,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种? 分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。 共C(6,3)=20种方法。 例32间接计数法(1)排除法 例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形? 分析:有些问题正面求解有一定困难,可以采用间接法。 所求问题的方法数=任意三个点的组合数-共线三点的方法数, 共76种。 例15正方体8个顶点中取出4个,可组成多少个四面体? 分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数, 共C(8,4)-12=70-12=58个。 例33. 1,2,3,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数? 分析:由于底数不能为1。 (1)当1选上时,1必为真数, 有一种情况。 (2)当不选1时,从2-9中任取两个分别作为底数,真数,共A(8,2)=56,其中log2为底4=log3为底9,log4为底2=log9为底3, log2为底3=log4为底9, log3为底2=log9为底4. 因而一共有56-4+1=53个。 例34某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒 ,则不同的选购方式共有( )(A) 5种(B) 6种 (C) 7种(D) 8种解法一 记购买的软件数为x,磁盘数为y,依题意x,yZx3,y260x70y500当x3时,y2,3,4;当x4时,y2,3;当x5时,y2;当x6时,y2.上述的不等式组共有7组解,故不同的选购方式共有7种,选C解法二 依题意,(x,y)是在坐标平面上,位于三条直线L1:x3,L2:y2,L3:60x70y=500围成的三角形的边界及内部的点(坐标均为整数的点),如图721,这样的点共有7个,故选C评述 这是一个计数的应用问题,解法一转化为求不等式组的整数解的个数;解法二转化求坐标平面上特定区域内的整点个数事实上,两种解法最终都采用了穷举法这是解决计数问题的基本方法之一例35在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的种植方法共有多少种?解法一 如表格所示,用表示种植作物的地垄,表示未种植作物的地垄,则不同的选垄方法共有6种,由于A、B是两种作物,故不同的种植方法共有12种解法二 选垄方法可分为三类:第一类间隔为6垄,有18,29,310三种选法;第二类间隔为7垄,有19,210两种选法;第三类间隔为8垄,只有110种选法,故选垄方法共6种,种植方法共12种评述 这是一个计数的应用问题,解法一采用了画框图的方法;解法二直接应用加法原理和乘法原理若将例1和例2判定为排列与组合的问题,并布列含排列数或组合数的算式,反而会将对问题的思考复杂化,难以得出正确的结论,由此可见,不应把计数问题都简单归结为排列和组合的问题,也不能只通过计算排列数或组合数求解例37人排成一行,分别求出符合下列要求的不同排法的种数(1)甲排中间;(2)甲不排在两端;(3)甲、乙相邻;(4)甲在乙的左边(不一定相邻);(5)甲、乙、丙两两不相邻解:(1)甲排中间,其余6人任意排列,故共有720种不同排法(2)若甲排在左端或右端,各有种排法,故甲不排在两端共有3600种不同排法(3)法一:先由甲与除乙以外的5人(共6人)任意排列,再将乙排在甲的左侧或右侧(相邻),故共有1440种不同排法法二:先将甲、乙合成为一个“元素”,连同其余5人共6个“元素”任意排列,再由甲、乙交换位置,故共有1440种不同排法(4)在7人排成一行形成的种排法中,“甲左乙右”与“甲右乙左”的排法是一一对应的(其余各人位置不变),故甲在乙的左边的不同排法共有2520种不同解法(5)先由除甲、乙、丙以外的4人排成一行,形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论