第17课时 直线与圆的关系.doc_第1页
第17课时 直线与圆的关系.doc_第2页
第17课时 直线与圆的关系.doc_第3页
第17课时 直线与圆的关系.doc_第4页
第17课时 直线与圆的关系.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题:直线与圆的关系一、教学目标1、掌握点到直线的距离公式2、掌握直线与圆之间的关系3、掌握圆与圆之间的位置关系二、重、难点1、重点:点到直线距离公式的运用2、难点:点到直线距离公式的运用教学过程:一、基本知识点1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围。2、直线的斜率:(1)定义:倾斜角不是90的直线,它的倾斜角的正切值叫这条直线的斜率,即tan(90);倾斜角为90的直线没有斜率;(2)斜率公式:经过两点、的直线的斜率为;(3)直线的方向向量,直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线: 。3、直线的方程:(1)点斜式:已知直线过点斜率为,则直线方程为,它不包括垂直于轴的直线。(2)斜截式:已知直线在轴上的截距为和斜率,则直线方程为,它不包括垂直于轴的直线。(3)两点式:已知直线经过、两点,则直线方程为,它不包括垂直于坐标轴的直线。(4)截距式:已知直线在轴和轴上的截距为,则直线方程为,它不包括垂直于坐标轴的直线和过原点的直线。(5)一般式:任何直线均可写成(A,B不同时为0)的形式。提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点。4.设直线方程的一些常用技巧:(1)知直线纵截距,常设其方程为;(2)知直线横截距,常设其方程为(它不适用于斜率为0的直线);(3)知直线过点,当斜率存在时,常设其方程为,当斜率不存在时,则其方程为;(4)与直线平行的直线可表示为;(5)与直线垂直的直线可表示为.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。5、点到直线的距离及两平行直线间的距离:(1)点到直线的距离;(2)两平行线间的距离为。6、直线与直线的位置关系:(1)平行(斜率)且(在轴上截距);(2)相交;(3)重合且。(4)直线与直线垂直。7、到角和夹角公式:(1)到的角是指直线绕着交点按逆时针方向转到和直线重合所转的角,且tan=();(2)与的夹角是指不大于直角的角且tan=()。提醒:解析几何中角的问题常用到角公式或向量知识求解。8、对称(中心对称和轴对称)问题代入法:提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解。9、圆的方程:圆的标准方程:。圆的一般方程:,特别提醒:只有当时,方程才表示圆心为,半径为的圆(二元二次方程表示圆的充要条件是什么? (且且);10、点与圆的位置关系:已知点及圆,(1)点M在圆C外;(2)点M在圆C内;(3)点M在圆C上。11、直线与圆的位置关系:直线和圆有相交、相离、相切。可从代数和几何两个方面来判断:(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):相交;相离;相切;(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为,则相交;相离;相切。提醒:判断直线与圆的位置关系一般用几何方法较简捷。12、圆与圆的位置关系(用两圆的圆心距与半径之间的关系判断):已知两圆的圆心分别为,半径分别为,则(1)当时,两圆外离;(2)当时,两圆外切;(3)当时,两圆相交;(4)当时,两圆内切;(5)当时,两圆内含。13、圆的切线与弦长:(1)切线:过圆上一点圆的切线方程是:,过圆上一点圆的切线方程是:,一般地,如何求圆的切线方程?(抓住圆心到直线的距离等于半径);从圆外一点引圆的切线一定有两条,可先设切线方程,再根据相切的条件,运用几何方法(抓住圆心到直线的距离等于半径)来求;过两切点的直线(即“切点弦”)方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知圆的公共弦就是过两切点的直线方程;切线长:过圆()外一点所引圆的切线的长为();(2)弦长问题:圆的弦长的计算:常用弦心距,弦长一半及圆的半径所构成的直角三角形来解:;过两圆、交点的圆(公共弦)系为,当时,方程为两圆公共弦所在直线方程.。14.解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)!二、例题解析1、直线的倾斜角的范围是_2、过点的直线的倾斜角的范围值的范围是_3、若直线与圆有公共点,则( )ABCD4 、两条直线钭率相等是这两条直线平行的_条件5、经过点(2,1)且方向向量为=(1,)的直线的点斜式方程是_6、直线L1: ax+(1-a)y=3, L2: (a-1) x+(2a+3)y=2互相垂直, 则a的值是 ( )A 0或- B 1或-3 C -3 D 17、已知点M是直线与轴的交点,把直线绕点M逆时针方向旋转45,得到的直线方程是_8、点(,)关于直线的对称点为(2,7),则的方程是_ _9、已知圆的方程为.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为 (A)10(B)20(C)30(D)4010、已知圆x2+y2+2x-6y+F=0与x+2y-5=0交于A, B两点, O为坐标原点, 若OAOB, 则F的值为 ( )A 0 B 1 C -1 D 211、设直线l的方程为(a1)xy2a0(aR)(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若a1,直线l与x、y轴分别交于M、N两点,求OMN面积取最大值时,直线l的方程12、圆C:(x1)2(y2)225,直线l:(2m1)x(m1)y7m4(mR)(1)证明:不论m取什么实数,直线l与圆恒相交于两点;(2)求C与直线l相交弦长的最小值课后巩固计划:1、直线,不管怎样变化恒过点_2、若曲线与有两个公共点,则的取值范围是_3、过点,且纵横截距的绝对值相等的直线共有_条4、两条直线与相交于第一象限,则实数的取值范围是_5、设分别是ABC中A、B、C所对边的边长,则直线与的位置关系是_6、已知点是直线上一点,是直线外一点,则方程0所表示的直线与的关系是_7、若圆与圆的公共弦长为,则a=_.8、若直线始终平分圆的周长,则的最小值为( )A1 B5 C D9、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是_10、设圆满足:截y轴所得弦长为2;被x轴分成两段圆弧,其弧长之比为3:1;圆心到直线的距离为,求该圆的方程11、设M是圆上的动点,O是原点,N是射线OM上的点,若,求点N的轨迹方程。12、已知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论