



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2均值不等式课堂探究一、使用均值不等式求最值的注意事项剖析:(1)a,b都是正实数,即所求最值的代数式中的各项必须都是正数,否则就会得出错误答案例如,当x0时,函数f(x)x22,所以函数f(x)的最小值是2由于f(2)22,很明显这是一个错误的答案其原因是当x0时,不能直接用均值不等式求f(x)x的最值因此,利用均值不等式求最值时,首先确定所求最值的代数式中的各项是否都是正数其实,当x0,则f(x)x22,此时有f(x)2因此,当所求最值的代数式中的各项不都是正数时,应利用变形,转化为各项都是正数的代数式(2)ab与ab有一个是定值,即当ab是定值时,可以求ab的最值;当ab是定值时,可以求ab的最值如果ab和ab都不是定值,那么就会得出错误答案例如,当x1时,函数f(x)x2,所以函数f(x)的最小值是2由于2是一个与x有关的代数式,很明显这是一个错误的答案其原因是没有掌握均值不等式求最值的条件:ab与ab有一个是定值其实,当x1时,有x10,则函数f(x)x1213因此,当ab与ab没有一个是定值时,通常把所求最值的代数式采用配凑的方法化为和或积为定值的形式(3)等号能够成立,即存在正数a,b使均值不等式两边相等,也就是存在正数a,b使得如果忽视这一点,就会得出错误答案例如,当x2时,函数f(x)x22,所以函数f(x)的最小值是2很明显x中的各项都是正数,积也是定值,但是等号成立的条件是当且仅当x,即x1,而函数的定义域是x2,所以这是一个错误的答案其原因是均值不等式中的等号不成立其实,根据解题经验,遇到这种情况时,一般就不再用均值不等式求最值了,此时该函数的单调性是确定的,可以利用函数的单调性求得最值利用函数单调性的定义可以证明,当x2时,函数f(x)x是增函数,函数f(x)的最小值是f(2)2因此在使用均值不等式求最值时,上面三个条件缺一不可,通常将这三个条件总结成口诀:一正、二定、三相等二、教材中的“思考与讨论”均值不等式与不等式a2b22ab的关系如何?请对此进行讨论剖析:(1)在a2b22ab中,a,bR;在ab2中,a,b0(2)两者都带有等号,等号成立的条件从形式上看是一样的,但实质不同(范围不同)(3)证明的方法都是作差比较法(4)都可以用来求最值题型一利用均值不等式求最值【例1】 (1)已知x,y(0,),且2xy1,求的最小值;(2)已知x2,求函数f(x)x的最大值分析:(1)利用“1”的代换,即将等价转化为1或即可;(2)将x等价转化为2即可解:(1)(2xy)2133232,当且仅当,即时等号成立的最小值为32(2)x0,f(x)x2222,当且仅当2x,得x0或x4(舍去),即x0时,等号成立x取得最大值2反思:求最值问题第一步就是“找”定值,观察、分析、构造定值是问题突破口定值找到还要看“”是否成立,不管题目是否要求指出等号成立的条件,都要验证“”是否成立题型二利用均值不等式比较大小【例2】 若ab0,试比较a,b的大小分析:这是一个有趣的不等式链,取特殊值可判断其大小关系借助不等式和重要不等式变形可寻求判断和证明的方法解:ab0,aa2b22ab,2(a2b2)(ab)2,2又a0,b0,则,b0,bab反思:均值不等式ab2(a,bR)是综合证明不等式和利用重要不等式求最值的工具,要注意不等式成立的条件,它与两个正数的算术平均数不小于它们的几何平均数是等价命题有趣的不等式链(a,bR),揭示了两正数倒数和、积、和平方、平方和之间的不等关系,当某一部分为定值时,其余三部分都能取到最值,且都在两数相等时取等号,利用这个不等式链往往使复杂问题简单化,要在理解的基础上记忆和应用题型三利用均值不等式证明不等式【例3】 已知a,b,c都是正实数,且abc1,求证:(1a)(1b)(1c)8abc分析:注意到abc1,故可运用“常数代换”的策略将所证不等式的左边的“1”代换成字母形式证明:abc1,(1a)(1b)(1c)(bc)(ac)(ab)又a,b,c都是正实数,0,0,0abc(1a)(1b)(1c)8abc当且仅当abc时,等号成立反思:这是一道条件不等式的证明题,充分利用条件是证题的关键,此题要注意“1”的整体代换及三个“”必须同时取到题型四利用均值不等式解恒成立问题【例4】 已知不等式(xy)9对任意正实数x,y恒成立,求正实数a的最小值分析:解:(xy)1a,又x0,y0,a0,22,1a1a2,要使(xy)9对任意正实数x,y恒成立,只需1a29恒成立即可(1)29,即13,a4,正实数a的最小值为4反思:恒成立问题是数学问题中非常重要的问题,在此类问题的解法中,利用均值不等式和不等式的传递性求解是最重要的一种方法,在高考中经常考查题型五易错辨析【例5】 已知0x1,求f(x)2log5x的最值错解:f(x)2log5x2222,f(x)的最小值为22错因分析:ab2的前提条件是a,b0,0x1,log5x00不能直接使用均值不等式正解:0x1,log5x0(log5x)22log5x2f(x)22当且仅当log5x,即x5时,等号成立,此时f(x)有最大值22【例6】 求f(x)1的最小值错解:因为f(x)111213,所以f(x)1的最小值为3错因分析:忽视了等号成立的条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河南陆军第八十三集团军医院招聘34人考前自测高频考点模拟试题及答案详解(各地真题)
- 2025福建漳州长运高中招聘21人模拟试卷附答案详解(典型题)
- 2025广东深圳大学人文学院李立教授团队博士后招聘1人模拟试卷含答案详解
- 2025广东佛山市顺德区乐从第一实验学校临聘教师招聘考前自测高频考点模拟试题及答案详解(历年真题)
- 2025湖南株洲市自然资源和规划局选聘模拟试卷及答案详解(名校卷)
- 2025广西北部湾大学招聘高层次人才53人模拟试卷及答案详解一套
- 2025河北秦皇岛市北兴企业管理咨询有限公司招聘派遣制人员4人考前自测高频考点模拟试题附答案详解
- 2025年甘肃省庆阳市西峰区招聘城镇公益性岗位20人考前自测高频考点模拟试题及一套答案详解
- 2025湖南长沙浏阳市审计局人员模拟试卷及答案详解(历年真题)
- 2025河南省中医院(河南中医药大学第二附属医院)招聘博士研究生64人模拟试卷附答案详解(模拟题)
- 绿色清新简洁模板
- 医院护理培训课件:《护士VTE评估过程中常见问题及应对》
- 卫生院对村卫生室业务指导总结
- 小学英语写人作文
- 23秋国家开放大学《液压与气压传动》形考任务1-2参考答案
- 煤矿架空乘人装置安装检验报告
- 寻常型天疱疮
- 法人车辆租给公司合同范本
- 汉画像石课件
- 初中毕业证怎么从网上查询
- GB/T 32926-2016信息安全技术政府部门信息技术服务外包信息安全管理规范
评论
0/150
提交评论