




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正确使用频谱分析仪需注意的几点 首先 电源对于频谱分析仪来说是非常重要的 在给频谱分析仪加电之前 一 定要确保电源接法正确 保证地线可靠接地 频谱仪配置的是三芯电源线 开 机之前 必须将电源线插头插入标准的三相插座中 不要使用没有保护地的电 源线 以防止可能造成的人身伤害 其次 对信号进行精确测量前 开机后应预热三十分钟 当测试环境温度 改变3 5度时 频谱仪应重新进行校准 三 任何频谱仪在输入端口都有一个允许输入的最大安全功率 称为最大 输入电平 如国产多功能频谱分析仪 AV4032要求连续波输入信号的最大功率不 能超过 30dBmW 1W 且不允许直流输入 若输入信号值超出了频谱仪所允许 的最大输入电平值 则会造成仪器损坏 对于不允许直流输入的频谱仪 若输 入信号中含有直流成份 则也会对频谱仪造成损伤 一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出 如果频谱仪不允许信号中含有直流电压 当测量带有直流分量的信号时 应外 接一个恰当数值的电容器用于隔直流 当对所测信号的性质不太了解时 可采用以下的办法来保证频谱分析仪的 安全使用 如果有 RF 功率计 可以用它来先测一下信号电平 如果没有功率计 则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器 频谱 仪应选择最大的射频衰减和可能的最大基准电平 并且使用最宽的频率扫宽 SPAN 保证可能偏出屏幕的信号可以清晰看见 我们也可以使用示波器 电 压表等仪器来检查 DC 及 AC 信号电平 频谱分析仪的工作原理 频谱分析仪架构犹如时域用途的示波器 外观如图1 2所示 面板上布建许多功能控制按键 作 为系统功能之调整与控制 系统主要的功能是在频域里显示输入信号的频谱特性 频谱分析仪 依信号处理方式的不同 一般有两种类型 即时频谱分析仪 Real Time Spectrum Analyzer 与扫 瞄调谐频谱分析仪 Sweep Tuned Spectrum Analyzer 即时频率分析仪的功能为在同一瞬间显 示频域的信号振幅 其工作原理是针对不同的频率信号而有相对应的滤波器与检知器 Detector 再经由同步的多工扫瞄器将信号传送到 CRT 萤幕上 其优点是能显示周期性杂散 波 Periodic Random Waves 的瞬间反应 其缺点是价昂且性能受限於频宽范围 滤波器的数目 与最大的多工交换时间 Switching Time 最常用的频谱分析仪是扫瞄调谐频谱分析仪 其基 本结构类似超外差式接收器 工作原理是输入信号经衰减器直接外加到混波器 可调变的本地 振荡器经与 CRT 同步的扫瞄产生器产生随时间作线性变化的振荡频率 经混波器与输入信 号混波降频后的中频信号 IF 再放大 滤波与检波传送到 CRT 的垂直方向板 因此在 CRT 的 纵轴显示信号振幅与频率的对应关系 信号流程架构如图1 3所示 影响信号反应的重要部份 为滤波器频宽 滤波器之特性为高斯滤波器 Gaussian Shaped Filter 影响的功能就是量测时 常见到的解析频宽 RBW Resolution Bandwidth RBW 代表两个不同频率的信号能够被清楚 的分辨出来的最低频宽差异 两个不同频率的信号频宽如低於频谱分析仪的 RBW 此时该两 信号将重叠 难以分辨 较低的 RBW 固然有助於不同频率信号的分辨与量测 低的 RBW 将滤 除较高频率的信号成份 导致信号显示时产生失真 失真值与设定的 RBW 密切相关 较高的 RBW 固然有助於宽频带信号的侦测 将增加杂讯底层值 Noise Floor 降低量测灵敏度 对於 侦测低强度的信号易产生阻碍 因此适当的 RBW 宽度是正确使用频谱分析仪重要的概念 频谱分析仪对于信号分析来说是不可少的 它是利用频率域对信号进行分析 研究 同时也应用于诸多领域 如通讯发射机以及干扰信号的测量 频谱的监测 器件的特性分 析等等 各行各业 各个部门对频谱分析仪应用的侧重点也不尽相同 下面结合我台 DSNG 卫星移动站的工作特点 就电视信号传输过程中利用频谱分析仪捕捉卫星信标 监 控地面站工作状态等方面 简要介绍一下频谱分析仪的工作原理 科学发展到今天 我们可以用许多方法测量一个信号 不管它是什么信号 通常所用 的最基本的仪器是示波器 观察信号的波形 频率 幅度等 但信号的变化非常复杂 许 多信息是用示波器检测不出来的 如果我们要恢复一个非正弦波信号 F 从理论上来说 它是由频率 F1 电压 V1与频率为 F2 电压为 V2信号的矢量迭加 见图1 从分析手段 来说 示波器横轴表示时间 纵轴为电压幅度 曲线是表示随时间变化的电压幅度 这是 时域的测量方法 如果要观察其频率的组成 要用频域法 其横坐标为频率 纵轴为功率 幅度 这样 我们就可以看到在不同频率点上功率幅度的分布 就可以了解这两个 或是 多个 信号的频谱 有了这些单个信号的频谱 我们就能把复杂信号再现 复制出来 这 一点是非常重要 对于一个有线电视信号 它包含许多图像和声音信号 其频谱分布非常复杂 在卫星 监测上 能收到多个信道 每个信道都占有一定的频谱成份 每个频率点上都占有一定的 带宽 这些信号都要从频谱分析的角度来得到所需要的参数 从技术实现来说 目前有两种方法对信号频率进行分析 其一是对信号进行时域的采集 然后对其进行傅里叶变换 将其转换成频域信号 我 们把这种方法叫作动态信号的分析方法 特点是比较快 有较高的采样速率 较高的分辨 率 即使是两个信号间隔非常近 用傅立叶变换也可将它们分辨出来 但由于其分析是用 数字采样 所能分析信号的最高频率受其采样速率的影响 限制了对高频的分析 目前来 说 最高的分析频率只是在10MHz 或是几十 MHz 也就是说其测量范围是从直流到几十 MHz 是矢量分析 这种分析方法一般用于低频信号的分析 如声音 振动等 另一方法原理则不同 它是靠电路的硬件去实现的 而不是通过数学变换 它通过直 接接收 称为超外差接收直接扫描调谐分析仪 我们叫它为扫描调谐分析仪 在工作中通常所用的 HP 859X 系列频谱仪都是此类的分析仪 其优点是扫描调谐分析 法受器件的影响 只要我们把器件频率做得很高 其分析能力就会很强 目前的工艺水平 器件可达到100GHz 最高甚至可做到325GHz 其频率范围要比前一种分析方法大很多 只是在达到较高分辨率时 其分析测量的时间会有所增加 在实际工作中 无线信号卫星信号的监督 由于其频率很高 都是采用扫描调谐的方 式 它所能给我们的信息没有相位参数 只有幅度 频率 它是一种标量的分析方法 另 外 这种方法有很高的灵敏度 它受到前端扫描调谐器件的控制 还有很高的动态范围 下面我们着重介绍一下扫描调谐分析仪的基本原理 从图2中 我们不难看出 它是用 超外差接收机的方式来实现频谱分析的 最基本的核心部分是它的混频器 基本功能是将被测信号下变至中频21 4MHz 然后 在中频上进行处理 得到幅度 在下变频的过程中 是由本振来实现下变频的 本振信号 是扫描的 本振扫描的范围覆盖了所要分析信号的频率范围 所以调谐是在本振中进行的 全部要分析的信号都下变频到中频进行分析并得到谱频 这与日常所用的电视机 收音机 的原理是一样的 但是有线电视输出信号范围很广 比如有50个频道播放 这50个信号是同时进入接收 机的 其总功率是迭加的 而所看的电视节目只能是其中之一 同理 送入频谱仪的输入 端口信号是所采集信号的总和 其中包括所要分析的特定信号 所输入到频谱仪的功率是 总功率 由此要引入一个参数 最大烧毁功率 这一值是1瓦或是 30dBm 也就是说输入到 频谱仪的信号功率总和不能超过1瓦 否则将会烧毁仪器的衰减器和混频器 例如 我们要监测一个卫星信号 假设其频率为12GHz 其功率可能只有 80dBm 左右 这是很小的 但要知道输入信号是由很多信号迭加组成的 若是在其它某一频率上包括一 个很强的信号 即使你没有看到这个大功率信号 若输入信号功率的总和大于1瓦 也是要 烧毁频谱仪的 而其中的大功率信号并不是你所要分析的信号 这是我们在日常工作中需 多加小心的 因为更换混频器的费用是很高的 当然 频谱仪在输入信号时并没有直接将其接入混频器 而是首先接入一个衰减器 这不会影响最终的测量结果 完全是为了仪表内部的协调 如匹配 最佳工作点等等 它 的衰减值是步进的 为0dB 5dB 10dB 最大为60dB 还有的频谱仪是不能输入直流的 否则也会损坏器件 另外 还应注意不能有静电 因为静电的瞬时电压很高 容易把有源器件击穿 日常工作中把仪表接地就会有很好的效 果 当然要有保护接地会更好 在中频 所有信号的功率幅度值与输入信号的功率是线性关系 输入信号功率增大 它也增大 反之相同 所以我们检测中频信号是可行的 另外 为了有效检测 要有一个 内部中频信号放大 混频器本身有差落衰减 本频和射频混频之后它并不是只有一个单一 中频出来 它的中频信号非常丰富 所有这些信号都会从混频器中输出 在众多的谐波分 量中 只对一个中频感兴趣 这就是前面所说的21 4MHz 这是在仪器器件中已做好的 用一个带通滤波器把中心频率设在 21 4MHz 滤除其它信号 提取21 4MHz 的中频信号 通过中频滤波器输出的信号 才是我们所要检测的信号 滤波器在工作中有几个因素 中心频率是21 4MHz 固定不变 其30dB 带宽可以改变 比如对广播信号来说 其带宽一般是几十 kHz 若信号带宽是 25kHz 中频的带宽一定要 大于25kHz 这样 才能使所有的信号全部进来 如果太宽 就会混入其它信号 如果太 窄 信号才进来一部分 或是低频成份 或是高频成份 这样信号是解调不出来的 中频带宽设置根据实际工作的需要来决定的 当然它会影响其它很多因素 如底噪声 信号解调的失真度等 经过中频滤波器的中频信号功率就是反应了输入信号的功率 检测的方法就是用一个 检波器 将它变为电压输出 体现在纵轴的幅度 当然还要经过 D A 转换和一些数据处理 加一些修正和一些对数 线性变换 这足以给我们带来信号分析上的许多方便 频谱分析是要分析频域的 一个信号要分析两个参数 一是幅度 二是频率 幅度已 经得出 而频率和幅度要对应起来 在某一频率是什么幅度 下面介绍一下频率是如何测 量的 如何与幅度对应起来 其实很简单 它是通过本振与扫描电压对应起来的 本振是一个压流振荡器 本振信 号是个扫描信号 扫描控制是由扫描控制器来完成的 它同时控制显示器的横坐标 从左 到右当扫描电压在 OV 时 在显示器上是0点 对本振信号来说是 F1点 即起始频率点 当扫描电压到10V 时 在显示器上是终止频率点 本振电压就是在终止频率点 中间是线 性的 通过这样的方法 使得显示器坐标的每一点与本振 F1 F2的每一点对应起来 射频 信号是本振信号减去中频信号 21 4MHz 当我们操作频谱仪进行分析时 实际是在改变本 振信号的频率 下面简单介绍一下用频谱分析仪来评价发射机的方法 先了解一下发射机最基本的框 图 见图3 首先是一个调制部分将基带信号调制到中频信号 然后将中频信号上变频到射 频信号上 还有一个与之相对的本振信号 对射频信号进行预放 再进行功率放大之后送 到天线上发射 如何用频谱仪对这样一个发射机进行测量 首先对它的发射信号从测量端口进行测量 若是把发射信号直接送入频谱仪 必然会把仪器烧坏 在这里我们要测其功放的失真 发射信号的频率 功率 对发射机内部预放失真 增益 噪声系数 混频器的输出功率 输入功率进行测量 得到混频器的差落损耗 对混频器的输出功率进行准确测量 了解其 工作点 对混频器的本振信号进行测量 得出本振信号的输出频率 了解其频率精度 这 个频率精度也就决定了发射机的精度 通过以上这些测量 可以得到对于发射机内部信号 器件和输出信号的多项参数 以描述这个发射机的性能 作为通讯的监测 一般不去检测 其内部的器件 只检测其频率 功率 只要这两项指标正常 就可以判定这部发射机是正 常工作 了解频谱仪的功能 必须要考察频谱仪的内部噪声 失真等等 一个放大器 要测它 的失真 三阶交调失真和谐波失真 三阶交调失真是当对一个放大器输入二个频率相近 如差10kHz 的信号 幅度一样 由于放大器是非线性器件 在对这两个信号进行功率 放大时 也会产生一些其它信号 如2F1 F2和2F2 F1 这两种信号就是三阶交调失真 见 图4上 它的特性非常靠近中间的信号 上面和下面都相差10kHz 均匀排开 假设这个信 号的带宽是20kHz 这两个交调失真的信号肯定会进到信号的带宽内 对信号产生干扰 为了不干扰正常的通讯 我们必须测量这失真信号的大小 描述的方法是这失真信号的幅 度与正常的信号幅度之差 称之为失真量 另外一种放大器的失真是谐波失真 当对放大 器输入一个点频信号 F1 这个放大器会造成 F2 F3 两倍或三倍的多次谐波 若是正好 在2F1等处有其它信号 就会造成干扰 见图4下 一个放大器存在以上两种失真 我们用频谱仪去测量这些失真的大小 定义三阶交调 失真为载波信号与失真信号的功率差 定义谐波失真为载波信号与某次谐波的功率差 输入被测放大器两个信号 F1 F1 10kHz 然后送入频谱仪进行测量 用两个信号源 通过混合器再经过衰减器进入一个带通滤波器 以确保进入放大器的信号只是 F1和 F1 10kHz 没有其它成份 这个放大器产生交调失真的值是大于50dB 也就是失真信号与 要放大的信号之间的差值幅度为50dB 它的二次谐波相差40dB 三次谐波相差50dB 测量 谐波失真要关闭一个信号发生器的输出 见图5 由于频谱仪内部含有混频器 其特点是与有源器件放大器一样的 当输入信号为两个 信号或是点频信号时 这个混频器也会产生以上所述的失真 并在频谱仪上反应出来 给 测量带来误差 如何把频谱仪误差降低变为可测 对于一种测量 可以使它成为可测 也可以使它成为不可测 这完全取决于频谱仪的 设置 包括对衰减器 频率范围 分辨率带宽的设置 频谱仪的设置主要有频率范围 分辨率和动态范围 而动态范围又会涉及到最大的输 入功率即烧毁功率 增益压缩使小于1W 的输入信号如果超过线性工作区也会有误差 还 有灵敏度 要从以上几个主要方面来考虑频谱仪对输入的信号是否可测 现在来看第一项参数频率范围 这个参数要从两个方面看 一是频率范围的设置是否 足够的窄 具有足够的频率分辨能力 也就是窄的扫频宽度 见图6 二是频率范围是否 有足够的宽度 是否可以测到二次 三次谐波 当我们用一个频谱仪测量一个放大器的谐波失真的时候 若这个放大器工作点是 1GHz 那么它的三次谐波就是3GHz 这就是要考虑频率范围的最大可测宽度 如果频谱 仪是1 8GHz 的 那么就不能测量 如果是26 5GHz 的频谱仪 当然可以测到它的三次 四 次谐波 第二类指标是分辨率 这是频谱分析仪中非常重要的参数设置 分辨率表示当要测量 的是 F1 而在 F1的附近有另一个 F2 见图7 但它们的功率不一样 这时看能不能将它 们区分开 将这个中频带宽设置成三种不同的宽度 下面所对应的就是在这一带宽设置时 所看到的曲线 显示线 很显然中频带宽越窄分辨率越高 中频带宽越宽分辨率越低 分 辨率带宽直接影响到小信号的识别能力和测量的结果 分辨率实际上就是分辨两个信号的能力 中频滤波器的3dB 带宽就是分辨率带宽 见 图8 对信号的分辨除了分辨率带宽会影响之外 还有一个参数 滤波器的形状因数 见图 9 即滤波器60dB 对3dB 带宽之比值 形状因数越小越接近3dB 带宽 越陡峭就越接近于 矩形 这时分辨能力就越强 所以说形状因数越小 分辨能力越强 模拟滤波器一般为15 1或是11 1 而数字滤波器是5 1 对于一个信号的分辨能力还有 两个因素 剩余调频和噪声边带 见图10 剩余调频是本振信号的抖动 这是无法避免的工艺问题 这种抖动决定了它能分辨信 号间的小频率范围 如果两个信号相差频率是小于这个抖动范围 那么就无法把这两个信 号分辨出来 所以剩余调频这个指标就决定了频谱分析仪的最小可分辨的频率差 对于 HP 859X 来说是20Hz 对于 ESA 来讲是10Hz 噪声边带在信号响应基底上表现得不稳定 这个噪声可能掩盖近端 靠近载波 的低 电平信号 这个噪声是由本振的抖动引起的 在频率域上的体现 这个边带噪声降低了分 辨能力 对于频谱分析仪来说要降低边带噪声是很困难的 这涉及到其压控振荡器的制作工艺 而把滤波器的形状因数做小是相对比较容易实现的 所以我们评定一个频谱仪的时候不仅 要考虑它的边带噪声 也要考察它的形状因数 对于 HP 859X 的频谱仪 当分辨率带宽变得很窄 在300Hz 以下时 其滤波器就自动 切换到数字滤波器上 对于859X 的频谱仪其内部的滤波器全是模拟的 没有数字滤波器 数字滤波器的测量速度要高于模拟 用不同设置的分辨率带宽去测量交调信号 如图11所示 当测量 F1和 F1 10kHz F2 信号时 分辨率带宽 BW 设置成10kHz 与两个信号频 率差别是一样的 这种情况下我们看到的是最外面的曲线 正好将两个信号分开 但不太 容易分辨 只是知道是有两个信号存在 我们将 BW 下调一级 变成3kHz 图11中的中间 那条曲线 就可以将两个信号分辨得非常清楚 但它的交调失真还是看不出来 我们再把 BW 进一步降低成为1kHz 实际是提高了分辨率 我们就可以更清晰地看到 F1和 F2 同 时也看到两个失真信号 分辨率带宽降低能提高分辨率 但对测量来说分辨率降低会增加扫描时间 这时我们 可以对扫描时间进行人为设置 加快其扫描速度 提高测量速度 但是 由于扫描时间的 改变会造成测量上的误差 具体就是频率升高 而幅度降低 见图12 所以作为一种快速测量而不要求太高测量精度时 可以采用这种方法 但若要较高精 度的测量 必须要使 BW 与测量时间置于自动联动 方可满足准确测量的要求 频谱分析仪第三个重要指标 动态范围 动态范围表示当两个信号同时出现时 测量其 幅度差的能力 影响它的因素有最大输入功率 非线性工作区域 1dB 压缩点 有时为 0 5dB 频谱仪内部的混频器有一定的线性工作区域 如果超过线性区域 输入功率的变化与 输出功率的变化即呈非线性 输出功率的变化量比输入功率的变化量小 造成功率压缩 如果功率压缩存在 我们所测得的功率值就是不准确的 那么我们如何判断是否存在压缩呢 可以利用频谱仪内部的衰减器或外接衰减器来进 行判断 将衰减器的衰减量设置在10dB 时 测量混频器的输出功率 再将衰减器的衰减量 增加10dB 再去测量混频器输出功率也应线性地减小10dB 若变化量不是10dB 只有7或 8dB 说明混频器已工作在非线性区域 存在功率压缩区 即使当频谱仪工作在线性区域的时候 混频器仍然产生内部失真 因为它是有源的非 线性器件 在最差的情况下 内部失真完全可以覆盖被测件的失真产物或是外来的谐波失 真 即使当内部失真低于要测信号的失真 也会引起测量误差 因为当基波信号进入到频 谱仪时 它同样会产生二次和三次谐波 这种失真是由频谱仪内部产生的 这一失真会与 输入信号的失真混叠起来 最后输出的谐波分量要比真实的失真高 这就造成了一定的测 量误差 这要求频谱仪所产生的内部失真要尽量地小 使最后迭加出来的信号 趋近于被 测信号 如何降低频谱仪内部的谐波失真和交调失真 这可利用失真特性 二次或三次谐 波在数学公式上都存在这样的特点 即若存在一个频率为 F 的信号 其二次谐波为 2F 三次谐波为3F 当两个信号 F1 F2存在 其交调失真有2F1 F2 2F2 F1等等 见图13 当 F 信号功率变化1 时 2F 功率会变化2 它的三次谐波会变化3 变化量分别是 其2倍和3倍 也就是说当输入功率降低1dB 二次谐波和三次谐波分别会降低2dB 和3dB 交调失真是当 F1 F2分别变化1 2F1 F2和对应的2F2 F1均变化3 这就是其特点 在 测量时 频谱分析仪本身产生的二次谐波信号越高 它测量的范围越差 我们用输入信号 F0的功率值和产生信号谐波功率值之差来进一步定义动态范围 凡是被测信号落在这一范 围之内 都可以测出 如何使动态范围增大 见图14 我们可以利用上面所说的数学特性 只要将 F0的功 率降低1dB 2F0会降低2dB 这就使动态范围增大了1dB 若 F0的功率降低10dB 其动态 范围也会随之增大10dB 三次失真的降低速度会更快 二次谐波和三次谐波的动态范围是 呈线性变化的 只是斜率不一样 我们用动态范围和功率值建立一个坐标系 可以得到图15的曲线 横坐标实际是混频 器 F0输入功率值 纵坐标就是内部失真电平 在动态范围的图上划出由基波产生的二次和 三次失真产物与基波信号的相对关系 当一个混频器 F0的功率为0dB 它的二次谐波失真 信号的功率是固定的 差值也是固定的 可以看出 当功率降低越低 动态范围就越大 三次谐波更是如此 由此得出 混频器输入的功率越小 其动态范围就越大 对于小信号的测量还有一个影响因素是它的噪声底 一个被测信号在仪器本身的失真 范围之下是不可测的 若隐含在仪器本身的噪声底之下也是无法检测的 那么噪声底由谁 来决定 噪声底的第一个因素是衰减量 见图16 当衰减器的衰减量为10dB 时 我们可 以看到这些噪声曲线 同时看到一个小信号 当衰减量变成 20dB 噪声底会抬高10dB 小信号就会被覆盖在平均噪声功率之下 变成不可测量 所以衰减量会影响仪器的噪声底 并降低了信噪比 所以要用尽可能小的输入衰减以获得最好的信噪比 在实际的测量中 显示的信号电平不会随衰减的增加而下降 这是因为当衰减降低了 加到检波器的信号电平时 中频放大器会增加10dB 来补偿这个损失 这使荧光屏上的信号 幅度保持不变 但噪声电平被放大 增加了10dB 另一个因素是中频滤波器的带宽 见图17 带宽越宽 进来的噪声越多 功率当然也 就越高 带宽降低10倍 噪声功率也会降低10倍 带宽降低100倍 噪声功率也会降低100 倍 BW 从100kHz 变成10KHz 其噪声平均显示电平会降低10dB 所以说频谱仪的噪声是在一定的分辨带宽下定义的 广义上说 频谱分析仪的最低噪 声电平是在最小分辨率带宽下得到的 当频谱仪设置的分辨带宽以及衰减量固定时 那么它的噪声底也就固定了 这时信号 的检测能力也决定了 当小信号低于噪声底时就不可测量 高于噪声底就变得可测 这个 测量范围就是被测信号与噪声底的比值 信号若比噪声底高10dB 可测范围就是10dB 这 一信噪比我们置于纵坐标上 输入功率在横坐标上 见图18 当噪声底固定的话 假设把 BW 设置在1kHz 时 衰减量不变 那么它的噪声是不变的 这时设输入功率为 40dB 信 噪比是75dB 当输入功率为 30dB 时 信噪比为85dB 从此看出 信号的降低 信噪比是 降低的 噪声底对动态范围的影响 把信号对噪声和信号对失真的曲线置于同一坐标系上 横 坐标是输入功率 纵坐标是动态范围 见图19 最大的动态范围处于曲线的交点 这时内 部产生的失真电平等于显示的平均噪声电平 频谱仪是否产生了失真 我们可以通过改变衰减器来判断 输入两个信号 F1和 F1 10k 当衰减量增大 混频器的输入功率降低 理论上失真也会降低 如果我们看到这 些信号是降低的话 说明失真信号是频谱仪内部产生的 如果不变 那么它是外来的信号 见图20 这是因为在调节衰减器的衰减量时 它后面有一个放大补偿 本文前面曾讲过 所以频谱仪显示的外来失真信号是不变的 但自身的失真会有明显的变化 这个方法可 简单明确的看出频谱仪是否工作在失真状态 在测量时为了使噪声曲线平滑 在检波之后 放置了一个低通滤波器 即视频滤波器 这就是 BW 键中 VBW 软键的设置 见图21 它的作用是将检测信号中的高频部分滤掉 使我们从显示屏上看到一个光滑的曲线 这对小信号的测量是非常有效的 它可使读数更 为稳定 最后谈一下灵敏度 简单地说 灵敏度就是最小可检测信号 定义为在一定分辨带宽 下显示的平均噪声电平 平均 就是足够窄的视频带宽 VBW 去平均信号加噪声或噪声 见图22 若一信号的电平等于显示的平均电平 它将以近似3dB 突起显示在平均噪声电 平之上 这一信号被认为是最小的可测量信号电平 如果要使频谱分析仪得到最好的灵敏度 有以下三个方法 1 最窄的分辨率带宽 2 最小的输入衰减 3 视频带宽 VBW 应是分辨率带宽的百分之一 但是最好的灵敏度可能与其它测量设置有矛盾 如测量时间大增 0dB 的衰减会增加 输入的驻波比 降低测量精度 总之 频谱仪的最佳工作状态是由诸多因素 参数决定的 不能片面追求某一指标的完美 需统筹考虑 对本文所述的基本因素和所要作的测量类型 进行分析 尽力趋向于完美的组合 如对小信号测量 要提高灵敏度 对失真测量要调节 衰减 同时要会判断频谱分析仪的工作状态等等 这在我们实际的工作中会遇到并要细心 实践 使用频谱分析仪的视频滤波带宽功能使用频谱分析仪的视频滤波带宽功能 使用使用频谱分析频谱分析 仪仪的视频滤波带宽功能的视频滤波带宽功能 频谱分析仪用户可能在没有完全了解视频滤波带宽 VFB 的情况下 已用过了这项功能 这项功能用于 何处及如何用它得到最理想的结果 大多数用户可能仅有一个模糊的概念 因此 仍保留着视频滤波带宽 的缺省设置 这一设置可能不是最坏的设置 但也可能不是最佳设置 理解视频滤波带宽的正确用法 大 多数频谱分析仪的测量结果会大大地改善 如果视频滤波带宽设置不合造 就会引起明显的测量错误 因此 了解何时改变视频滤波带宽设置 即缺省设置导致故障出现的情况 是很重要的 视频滤波带宽的合理设置能使一个已经不错的测量结果 进一步改善 频谱分析仪的视频滤波电路与电视机完全不同 更确切地说 它指的是分析仪屏幕上显示的示踪信息 视频滤波带宽指的是用来放大被测信号的电路或滤波器的带宽 一个更准确的定义是后置检波器电路 因 为视频滤波器往往在检测器之后 而分辨率滤波器 这是为广大频谱分析仪用户所熟知的 则在检波器之 前 一个较窄的后置检波器带宽相当于一个平均电路 因此 视频滤波器有时被当作是一个信号平均器 无论怎样描述和使用 都只能理解为视频滤波带宽与分辨率带宽 RB 有关 否则一个视频滤波带宽值 是没什么意义的 例如 可以说 l0KHz 的视频滤波带宽窄 也可以说它宽 这要看分辨率滤波器 如果 分辨率带宽滤波器设为1kHz 那么 l0KHz 的视频滤波带宽被认为是宽的 但是 如果分辨率带宽设为 lMHz 那么10KHz 的视频滤波带宽被认为是窄的 因此 总认为视频滤波带宽与分辨率带宽滤波器相关 是比率的关系 至于这个比率为多少 就要看显示的信号类型以及要对此信号做什么或测试什么 一个常见的缺省设置就是使视频滤波带宽与分辨率带宽相等 其实分辨率带宽是单独改变的 而视频 滤波带宽则与分辨率带宽的设置有关 所以 只要缺省的设置不变 分辨率带宽的任何变化都会影响到视 频滤波带宽 而视频滤波带宽的变化则不会影响分辨率带宽的设置 一旦视频滤波带宽被单独改变 它就 不再处于缺省设置 糯合或自动定位 视频滤波带宽也不再随分辨率带宽的变化而变化 为什么要让视 频滤波带宽比分辨率带宽宽或窄呢 有两个不同的因素 一个是满足特定类型的信号显示的需要 另一 个与高级频谱分析的过程有关 频谱分析仪用来测量三种基本的信号类型一一正弦波 脉冲和随机信号 如使用码分多址 CDMA 正交调幅 QAM 或其它随机或伪随机分布信号 视频滤波带宽的设置对于 纯正弦信号并不重要 即使当视频滤波带宽减小而延长测量的时间 显示的波形都不会随 视频滤波带宽的变化而变化 因此 除非理由合理 使视频滤波带宽小于分辨率带宽并不 可取 这个理由可能是正弦信号伴有噪声信号 此时 一个很窄的视频滤波带宽会滤除噪 声并使正弦信号显示得更好 通常 测正弦信号时 视频滤波带宽最好设为缺省状态 为了得到最精确的测试结果和最好的显示效果 脉冲信号需要一个宽的视频滤波带宽 一些频谱分析仪用户认为视频滤波带宽与分辨率带宽之比为3 1就足够了 有的则要求 10 1 笔者认为5 1的比例是足够的 不过 1 1比率的缺省的设置的测量结果可以接受 大多数用户保留了缺省设置 然而 视频滤波带宽应与分辨率带宽去桶 而且应设置得更 宽些 以获得最准确的频谱显示及测量结果 随机信号因其不确定性给测量带来了问题 频谱随每次扫频而变化 得到一个稳定 重复显示的最简单的方法 就是使频谱信号通过一个梧的视频滤波带宽来使其平滑 这里 的 窄 通常指分辨率带宽与视频滤波带宽之比至少是100 1 为使结果更准确 这一比率 应为1000 1或更大 这就意味着当分辨率带宽为10KHz 时 视频滤波带宽设在10Hz 上是 正常的 这样窄的视频滤波带宽会大大增加测量的时间 只有在必要的时候才能用 在测试中 为了进行一个高精度的测量过程 视频滤波带宽有时会设得比缺省的设置 更宽或更窄 每种情况都是独一无二的 一般情况下不考虑这种设置 而且要根据进行何 种测量而定 下面就两个例子解释一下 一个十分窄的视频滤波带宽充当一个平均电路 脉冲信号的平均值取决于占空比 它 是开 关的比率 这样 1 s 宽的脉冲信号在1KHz 的脉冲重复频率 PRF 时占空比为 1000 1 平均值将低于峰值201g 1000 60dB 另一个不同的脉冲信号的例子是一个较宽的视频滤波带宽设置 在这里 我们感兴趣的是 显示并测量调制脉冲信息 这是在频谱分析仪的零档模式下测量 在这种模式下 分析仪 只设一个跨跃整个显示屏幕的频率 这样就能得到一个检波或解调基于时基的显示结果 频谱分析仪分辨率带宽 视频带宽辨析和设置 在测量无线信号系统指标中 常常要用到频谱仪 为了使测量结果准确 在频谱分析仪的使用上常涉及到一个分辨带宽设置的 问题 要弄清这个问题 得要知道一些频谱仪的基本原理 图1是频谱分析仪的基本原理框图 图中的中频频率 输入信号通 过与本振信号的和频或差频产生 本振受斜波发生器的控制 在斜波发生器的控制下 本振频率将从低到高的线性变化 这 样在显示时 斜波发生器产生的斜波电压加到显示器的 X 轴上 检波器输出经低通滤波器后接到 Y 轴上 当斜波发生器对本振 频率进行扫描时显示器上将自动绘出输入信号的频谱 检波器输出端的低通滤波器称为视频滤波器 用在分析扫描时对响应进 行平滑 1 分辨带宽 在频谱分析仪中 频率分辨率是一个非常重要的概念 它是由中频滤波器的带宽所确定的 这个带宽决定了仪器的分辨带 宽 例如 滤波器的带宽是100KHZ 那么谱线频率就有100KHZ 的不定性 也即在一个滤波器的带宽频率范围内 出现了两条谱 线的话 则仪器不能检出这两条谱线 而只显示一条谱线 此时仪器所反映的谱线电平 功率 是这两条谱线的电平功率的叠 加 因此会出现测量误差 所以 对于两条紧密相关的谱线 其分辨力取决于滤波器的带宽 我们以测量载波电平为例 对仪器的分辨带宽设置加以比较 图2是分辨带宽分别是 由下到上 30KHZ 300KHZ 3MHZ 的 频谱曲线 输入为单个载波信号 在设置分辨带宽时 我们考虑的是仪器在充分响应输入信号时是否有足够的带宽 正确的方法是展宽滤波器的带宽 当在屏 幕上观察到信号载波幅度不再增加时 就表示中频滤波器对输入信号的响应已有足够的带宽了 在图中我们看到 当分辨带宽 在300KHZ 到3MHZ 变化时 显示的信号幅度没有变化 这就可以认为300KHZ 带宽已经足够了 另外 分辨带宽在300KHZ 和3MHZ 之间设置时 对于单个载波情况下的信号幅度没有变化 但是在实际测量 CATV 系统图象载波电平时却不能将分辨带宽设为 3MHZ 这是因为在实际中图象载波附近存在相邻频道的伴音载波 相距1 5MHZ 3MHZ 带宽则不能把相邻伴音载波的能量滤掉 这样相邻伴音载波的能量会加到正在测量的图象载波上 使测到的电平值比实际的高 2 视频滤波器 在图1中的检波器之后的滤波器称为检波滤波器又叫视频滤波器 它是一个低通滤波器 它的作用可以减少检波器输出的 噪声变化 揭示一些已被掩盖且接近本底噪声的信号 如果是测量噪声功率 它还有助于稳定测量 检波器输出端往往存在直流分量和交流分量 直流分量代表着中频带宽内存在的能量 所以通过视频滤波器可达到提取直 流分量去除一些交流分量 这样能给出更稳定的无噪声输出 图3是不同视频带宽下 检波器输出的信号图 图3a 采用宽带视 频滤波器 图3b 采用窄带视频滤波器 由图中可看出 采用宽带滤波器时噪声的波动较大 采用窄带滤波器时波动显著减少 两者的噪声平均值却一样 也就是说滤波器不会降低平均噪声电平 但能减少噪声的峰值电平 因而能暴露出用较宽视频滤波 器不能看到的低电平信号 但在某些情况下 如分析一些特殊的噪声信号时 我们则需要较宽的视频滤波器带宽 以便观察和 分析 所以我们可根据不同的情况来设置视频滤波器的带宽 视频滤波器的带宽和分辨带宽的关系是 检波前的噪声可以通过较窄的分辨带宽来降低 从而降低检波器的噪声输出电平 检波后的噪声则通过窄带视频滤波器来平滑减少噪声波动 但不能降低噪声的平均功率电平 频频谱谱分分析析低低度度的的主主要要设设置置参参数数 由于频谱仪内部含有混频器 其特点是与有源器件放大器一样的 当输入信号为两个信号 或是点频信号时 这个混频器也会产生以上所述的失真 并在频谱仪上反应出来 给测量 带来误差 如何把频谱仪误差降低变为可测 对于一种测量 可以使它成为可测 也可以使它成为不可测 这完全取决于频谱仪的 设置 包括对衰减器 频率范围 分辨率带宽的设置 频谱仪的设置主要有频率范围 分辨率和动态范围 而动态范围又会涉及到最大的输入 功率即烧毁功率 增益压缩使小于1W 的输入信号如果超过线性工作区也会有误差 还有 灵敏度 要从以上几个主要方面来考虑频谱仪对输入的信号是否可测 现在来看 第一项参数频率范围 这个参数要从两个方面看 一是频率范围的设置是否 足够的窄 具有足够的频率分辨能力 也就是窄的扫频宽度 见图6 二是频率范围是 否有足够的宽度 是否可以测到二次 三次谐波 当我们用一个频谱仪测量一个放大器的谐波失真的时候 若这个放大器工作点是 1GHz 那么它的三次谐波就是3GHz 这就是要考虑频率范围的最大可测宽度 如果频谱 仪是 1 8GHz 的 那么就不能测量 如果是26 5GHz 的频谱仪 当然可以测到它的三次 四次谐波 第二类指标是分辨率 这是频谱分析仪中非常重要的参数设置 分辨率表示当要测量 的是 F1 而在 F1的附近有另一个F2 见图 7 但它们的功率不一样 这时看能不能将它 们区分开 将这个中频带宽设置成三种不同的宽度 下面所对应的就是在这一带宽设置时所 看到的曲线 显示线 很显然中频带宽越窄分辨率越高 中频带宽越宽分辨率越低 分辨 率带宽直接影响到小信号的识别能力和测量的结果 分辨率实际上就是分辨两个信号的能力 中频滤波器的3dB 带宽就是分辨率带宽 见图 8 对信号的分辨除了分辨率带宽会影响之外 还有一个参数 滤波器的形状因数 见图 9 即滤波器 60dB 对3dB 带宽之比值 形状因数越小越接近3dB 带宽 越陡峭就越接近 于矩形 这时分辨能力就越强 所以说形状因数越小 分辨能力越强 模拟滤波器一般为 15 1或是 11 1 而数字滤波器是 5 1 对于一个信号的分辨能力还 有两个因素 剩余调频和噪声边带 见图10 剩余调频是本振信号的抖动 这是无法避免的工艺问题 这种抖动决定了它能分辨信号 间的小频率范围 如果两个信号相差频率是小于这个抖动范围 那么就无法把这两个信号分 辨出来 所以剩余调频这个指标就决定了频谱分析仪的最小可分辨的频率差 对于 HP 859X 来说是 20Hz 对于 ESA 来讲是 10Hz 噪声边带在信号响应基底上表现得不稳定 这个噪声可能掩盖近端 靠近载波 的低电 平信号 这个噪声是由本振的抖动引起的 在频率域上的体现 这个边带噪声降低了分辨能 力 对于频谱分析仪来说要降低边带噪声是很困难的 这涉及到其压控振荡器的制作工艺 而把滤波器的形状因数做小是相对比较容易实现的 所以我们评定一个频谱仪的时候不仅要 考虑它的边带噪声 也要考察它的形状因数 对于 HP 859X 的频谱仪 当分辨率带宽变得很窄 在300Hz 以下时 其滤波器就 自动切换到数字滤波器上 对于859X 的频谱仪其内部的滤波器全是模拟的 没有数字滤 波器 数字滤波器的测量速度要高于模拟 用不同设置的分辨率带宽去测量交调信号 如图11所示 当测量 F1和 F1 10kHz F2 信号时 分辨率带宽BW 设置成 10kHz 与两个信号 频率差别是一样的 这种情况下我们看到的是最外面的曲线 正好将两个信号分开 但不太 容易分辨 只是知道是有两个信号存在 我们将BW 下调一级 变成 3kHz 图 11中的 中间那条曲线 就可以将两个信号分辨得非常清楚 但它的交调失真还是看不出来 我们再 把 BW 进一步降低成为 1kHz 实际是提高了分辨率 我们就可以更清晰地看到F1和 F2 同时也看到两个失真信号 分辨率带宽降低能提高分辨率 但对测量来说分辨率降低会增加扫描时间 这时我们可 以对扫描时间进行人为设置 加快其扫描速度 提高测量速度 但是 由于扫描时间的改变 会造成测量上的误差 具体就是频率升高 而幅度降低 见图12 所以作为一种快速测量而不要求太高测量精度时 可以采用这种方法 但若要较高精度 的测量 必须要使BW 与测量时间置于自动联动 方可满足准确测量的要求 频谱分析仪第三个重要指标 动态范围 动态范围表示当两个信号同时出现时 测量 其幅度差的能力 影响它的因素有最大输入功率 非线性工作区域 1dB 压缩点 有时 为0 5dB 频谱仪内部的混频器有一定的线性工作区域 如果超过线性区域 输入功率的变化与输 出功率的变化即呈非线性 输出功率的变化量比输入功率的变化量小 造成功率压缩 如果 功率压缩存在 我们所测得的功率值就是不准确的 那么我们如何判断是否存在压缩呢 可以利用频谱仪内部的衰减器或外接衰减器来进行 判断 将衰减器的衰减量设置在10dB 时 测量混频器的输出功率 再将衰减器的衰减量 增加 10dB 再去测量混频器输出功率也应线性地减小10dB 若变化量不是 10dB 只有 7或8dB 说明混频器已工作在非线性区域 存在功率压缩区 即使当频谱仪工作在线性区域的时候 混频器仍然产生内部失真 因为它是有源的非线 性器件 在最差的情况下 内部失真完全可以覆盖被测件的失真产物或是外来的谐波失真 即使当内部失真低于要测信号的失真 也会引起测量误差 因为当基波信号进入到频谱仪时 它同样会产生二次和三次谐波 这种失真是由频谱仪内部产生的 这一失真会与输入信号的 失真混叠起来 最后输出的谐波分量要比真实的失真高 这就造成了一定的测量误差 这要 求频谱仪所产生的内部失真要尽量地小 使最后迭加出来的信号 趋近于被测信号 如何降低频谱仪内部的谐波失真和交调失真 这可利用失真特性 二次或三次谐波在数学公 式上都存在这样的特点 即若存在一个频率为F 的信号 其二次谐波为2F 三次谐波为 3F 当两个信号F1 F2存在 其交调失真有 2F1 F2 2F2 F1等等 见图 13 当 F 信号功率变化 1 时 2F 功率会变化 2 它的三次谐波会变化3 变化量分 别是其 2倍和 3倍 也就是说当输入功率降低1dB 二次谐波和三次谐波分别会降低2dB 和3dB 交调失真是当F1 F2分别变化 1 2F1 F2和对应的 2F2 F1均变化 3 这就是 其特点 在测量时 频谱分析仪本身产生的二次谐波信号越高 它测量的范围越差 我们用 输入信号 F0的功率值和产生信号谐波功率值之差来进一步定义动态范围 凡是被测信号落 在这一范围之内 都可以测出 如何使动态范围增大 见图14 我们可以利用上面所说的数学特性 只要将F0 的功率降低 1dB 2F0会降低 2dB 这就使动态范围增大了1dB 若 F0的功率降低 10dB 其动态范围也会随之增大10dB 三次失真的降低速度会更快 二次谐波和三次谐波 的动态范围是呈线性变化的 只是斜率不一样 我们用动态范围和功率值建立一个坐标系 可以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常德市物理期末考试卷及答案
- 叉车实操考试技巧卷子及答案
- 现代题目及答案李永乐
- 2025-2026学年人教版六年级数学上册第五单元圆应用题训练二【含答案】
- 物权法条例试题及答案
- 2025-2026学年人教版八年级数学上册期中评估测试卷(含答案)
- 2025商场店铺租赁合同书样本
- 物流计划管理试题及答案
- 物流概论学试题及答案
- 物料经理笔试题目及答案
- 影片备案报告范文
- Unit 2 We are family Section A 1a-1d 课件【人教新目标(2024)七年级上册】-1
- 2024年新人教版8年级上册物理全册课件
- 2024年11月-矿山隐蔽致灾因素普查
- 上海市建设工程施工图设计文件勘察设计质量疑难问题汇编(2024 版)
- 中职高教版(2023)语文职业模块-第一单元1.1七律二首-送瘟神【课件】
- 《电力线路安规培训》课件
- 安宁疗护临床实践
- 陶瓷柔性化制备工艺-洞察分析
- 老旧装置安全风险评估报告
- 2024年高中生暑期社会实践活动总结
评论
0/150
提交评论