数学人教版八年级上册全等三角形的判定(SSS)说课稿.doc_第1页
数学人教版八年级上册全等三角形的判定(SSS)说课稿.doc_第2页
数学人教版八年级上册全等三角形的判定(SSS)说课稿.doc_第3页
数学人教版八年级上册全等三角形的判定(SSS)说课稿.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

全等三角形的判定(SSS)说课稿一、说教材:、教材所处的地位和作用:这节课是一节新授课。全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。全等是两三角形间最简单、最常见的关系。本节既是前面所学知识的延伸与拓展,又是后继学习相似形的条件的基础,在知识结构上,等腰三角形,直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力,推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以提高。而且证明全等三角形是证明线段相等和角相等的重要手段,本节作为证明两个三角形全等的依据之一,因此成为重中之重。2、教育教学目标:(1)知识目标:经历用三边进行画图和验证三角形是否全等的过程中,探索出全等三角形的条件“边边边”,并能应用它们来判定两个三角形是否全等。(2)能力目标:在探索三角形全等条件的过程中,让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力。(3)情感目标:培养学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。3、学情分析:学生现在处于几何推理论证的初步阶段,从这章开始,学生应该逐步学会几何证明,几何证明题的推理证明的书写对学生来说难度较大,同时,我们知道,以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点。鉴于以上学情分析,我把本节课的重难点设置为:4、重点,难点以及确定的依据:本节课的重点是掌握三角形全等的条件“SSS”,并能应用它们来判定两个三角形是否全等。探索“SSS”及应用是难点。我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。5、教学具准备教具:相关多媒体课件;学具:剪刀、纸片、直尺。二、说教法学法:在课堂教学中将尽量为学生提供“做中学”的时间和空间,让学生在合作、体验中探究学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想。遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。三、教学过程教学流程:情景导入探索新知巩固练习综合提高-课堂小结一、创设情景,引入课题我设计以下两个问题:1、已知:ABCDEF,你能找出其中相等的边与角吗?2、小明有一个三角形纸片,你能画一个三角形与它全等吗?如何画?与同伴交流你的画法?【教师活动】鼓励学生交流,适时引导。【学生活动】相互交流,发表自己的见解。注意:我设计这两个问题,一方面引导学生回忆学过的三角形全等的有关知识,另一方面引出本节课要学习的内容。为本节课的教学提供相应得知识,为学生的自主探究提供方向和方法二、探索新知:1、探索三角形全等的条件:边、边、边我们来思考下面两个问题:(多媒体展示)做一做:(1)已知一个三角形的三个内角分别为40,60,80.你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?(2)已知一个三角形的三条边分别为4 cm、5 cm和7 cm,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?对于问题(1)鼓励学生去思考,只要学生能列举出反例即可,多媒体演示下图:对于问题(2)先引导学生交流画法,多媒体演示画法,然后鼓励学生去画,并将所画的三角形剪切与同伴的是否重合。在此基础上教师提出:你能发现什么结论?你是如何获得的?若改变三角形三边的取值,你能得到同样的结论吗?【学生活动】将学生每三人分为一组(其中一人为组长),由组长取三角形三边的长度,其他两人去画三角形,并将所画的三角形剪切,判断其能否重合,并总结所获得的结论。【教师活动】参与学生的活动,并适时给与指导,不断地调动学生的学习积极性。鼓励学生总结所获得的结论和交流解决问题的方法,并展示所画三角形。板书:1、三个内角对应相等的两个三角形不一定全等。2、三边对应相等的两个三角形全等。简写为:“边边边”或“SSS”如图:几何表述:在ABC和DEF中,ABCDEF(SSS)方法:画图-剪切比较重合即全等注意:我这样设计是因为新课程标准强调,学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。因此向学生提出问题后,帮助他们自主探索和合作交流,使他们在数学活动中掌握数学知识与技能、数学思想与方法,获得数学活动的经验。三、例题讲解已知:如图AB=CD,AD=BC.则A与C相等吗?为什么?ABCD【学生活动】观察图形,交流说明全等的方法。【教师活动】启发学生动脑,鼓励学生有条理的表达自己的思维。然后教师板书理由:结论:ABCCDA。证明:在ABC和CDAABCCDA(SSS)。方法归纳:公共边的应用。【拓展提问】AD与BC平行吗?为什么?注意:这样设计,一方面让学生应用“SSS”条件,体会成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论