


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.1.2 平面直角坐标系教学目标【知识与技能】1.知道利用数轴上确定直线上一个点的位置用一个数就可以了.2.理解平面直角坐标系及其相关概念.3.理解坐标的概念.4.能利用平面直角坐标系表示点的位置,也能根据坐标找到坐标平面上它所表示的点.【过程与方法】先利用数轴确定直线上一点的位置,进而利用两条共原点且互相垂直的两条数轴确定平面点的位置,再学习平面直角坐标系及相关概念,最后用坐标表示平面上的点或根据坐标找到坐标平面上它所表示的点.【情感态度】体验从易到难,从简单到复杂的数学探究过程,提高举一反三的数学能力,增强数学学习信心.【教学重点】平面直角坐标系及相关概念,各象限及坐标轴上点的坐标特征.【教学难点】各象限及坐标轴上点的坐标特征,建立适当的平面直角坐标系,表示平面上点的坐标.教学过程一、情境导入,初步认识问题1 如图,A,B两点在直线l上,怎样表示A,B两点的位置.问题2 如图,平面上有A,B,C三点,怎样用类似于数轴确定直线上点的位置的方法,确定A,B,C的位置.【教学说明】可提示学生在直线上确定出正方向、原点和单位长度,建立数轴,于是可用一个数表示A,B两点的位置了.基础上,用类似的方法确定问题2中A,B,C三点的位置.由前节可知,要表示平面上的点,必须用有序数对表示,所以想到要画两条数轴才能表示A,B,C三点的位置.我们可以在平面内画两条互相垂直,原点重合的数轴,这样我们就可以用有序数对表示A,B,C的位置了.二、思考探究,获取新知思考 1.什么叫做平面直角坐标系?2.坐标平面内各象限及坐标轴上点的坐标特征.3.点(a,b)与点(b,a)是否表示同一个点(ab)?4.怎样建立恰当的平面直角坐标系?如果建立的平面直角坐标系不同,对于平面上的一个点A,它的坐标相同吗? 【归纳结论】1.平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成四个象限,右上方叫第一象限,以后按逆时针的方向,依次为第二象限,第三象限和第四象限.坐标轴上的点不属于任何象限(如图).2.坐标:若点A在坐标平面内,过A作x轴的垂线,垂足在x轴上的坐标是a,过A作y轴的垂线,垂足在y轴上的坐标是b,那么A的坐标就是(a,b).3.坐标平面内,各象限及坐标轴上点的坐标特征.4.点(a,b)和点(b,a)表示的是两个点(ab).5.建立恰当的平面直角坐标系的技巧是要根据实际情况进行正确决策,如在网格点上,原点应选在某一格点处,以后可根据实际情况慢慢体会.如果坐标系建得不相同,则对于平面上一点A的坐标就不相同,恰当地建立坐标系,可使横纵坐标都较整,绝对值都较小,使问题解决起来较简单.三、运用新知,深化理解例题:(展示课件)四、师生互动,课堂小结请学生口头总结,最后用课件在屏幕上出示小结.课后作业1.布置作业:从教材“习题7.1”中选取.2.完成练习册中本课时的练习.教学反思本课灵活运用了多种数学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织游戏等活动.调动了学生学习的积极性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南张家界市人力资源和社会保障局招聘公益性岗位人员2人模拟试卷及答案详解(易错题)
- 2025辽渔集团有限公司人员模拟试卷及答案详解(典优)
- 2025广西南宁市人民路东段小学春季学期教师招聘1人考前自测高频考点模拟试题及一套完整答案详解
- 2025年河北承德医学院附属医院招聘技师岗工作人员7名考前自测高频考点模拟试题及完整答案详解一套
- 2025国家基础地理中心招聘工作人员(北京)考前自测高频考点模拟试题及参考答案详解1套
- 2025福建福州市罗源县卫健系统事业单位招聘编内卫技人员41人考前自测高频考点模拟试题及一套完整答案详解
- 2025年德州庆云县面向省属公费师范生(63人)模拟试卷及参考答案详解
- 2025年阜阳颍州区选调区内乡镇在编在岗教师60人模拟试卷附答案详解(模拟题)
- 2025河南科技职业大学心理健康教育中心招聘教师8人考前自测高频考点模拟试题有完整答案详解
- 2025辽宁抚顺高新热电有限责任公司招聘专业技术人员的二次模拟试卷及参考答案详解1套
- 中医护理操作并发症预防及处理
- 《混凝土结构耐久性电化学修复技术规程》
- 桥式起重机Q2练习测试题附答案
- 高级茶艺师理论知识试题
- 哈里伯顿Sperry定向钻井介绍专题培训课件
- 2021年江苏省徐州市中考生物试卷(附详解)
- JJF 1704-2018 望远镜式测距仪校准规范
- 石油化工设备维护检修规程通用设备12
- 《三角形的面积》教学设计方案
- GB/T 14667.1-1993粉末冶金铁基结构材料第一部分烧结铁、烧结碳钢、烧结铜钢、烧结铜钼钢
- 带状疱疹及带状疱疹后神经痛
评论
0/150
提交评论