




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
获得更多免费资源,请在百度文库搜索“超级资源+学科”,有意外惊喜哦!1.2.1有理数一、教学目标(一)知识与技能:1能说出有理数的意义。2能把给出的有理数按要求分类,知道数0在有理数分类中的作用。(二)过程与方法:经历按照不同标准对有理数分类的过程,培养归纳概括的数学思想方法。(三)情感态度价值观:通过有理数的分类,得到对称美的享受。二、学法引导1教学方法:启发引导,充分体现学生为主体,注重学生参与意识。2学生学法:识记练习巩固。三、重点、难点、疑点及解决办法1重点:有理数包括哪些数。2难点:有理数的分类。3疑点:明确有理数分类标准。四、教具学具准备投影仪、自制胶片。五、教学设计思路教师用投影出示练习题,学生讨论解决,教师引导学生对有理数进行分类,学生以多种形式完成训练题。六、教学过程设计(一)复习导入(出示投影1)1把下列各数填入相应的大括号内:6,3.8,0,4,6.2,3.8,正数集合负数集合2填空:(1)若下降5 记作5 ,那么上升8 记作_,不升不降记作_。(2)如果规定20表示收入20元,那么10元表示_。(3)如果由地向南走3千米用3千米表示,那么5千米表示_,在地不动记作_。【教法说明】出示投影后,学生思考,然后举手回答问题。当学生回答完一题后。教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正、负数的概念,以及零的特殊意义。通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示。师:在小学大家学过1,2,3,4这是什么数呢?生:自然数。师:在这些自然数前面加上负号,如1,2,3,4这些是什么数呢?生:负数。师:具体叫什么负数呢?师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题。这样一步一个台阶的教学过程,符合学生认识问题的一般规律。(二)探索新知,讲授新课1分类数的名称1,2,3,4叫做正整数;1,2,3,4叫做负整数。0叫做零。,(即)叫做正分数;,(即)叫做负分数;正整数、负整数和零统称为整数。正分数和负分数统称为分数。整数和分数统称有理数。即 【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律。提出问题:巩固概念(出示投影2)(1)0是整数吗?是正数吗?是有理数吗?(2)5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?【教法说明】这三道小题主要是检查学生对概念的理解。新授过程中随时设计习题进行反馈练习,以便调节回授。注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数。2有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:(1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:(2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类尝试反馈,巩固练习(出示投影3)下列有理数中:7,10.1,89,0,0.67,哪些是整数?哪些是分数?哪些是正数?哪些是负数?学生思考,然后找同学逐一回答其他同学准备补充或纠正。【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力。3数的集合我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。(三)变式训练,培养能力(出示投影4)(1)把有理数6.4,9,10,0.021,1,8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合。正整数集合,负整数集合正分数集合,负分数集合(2)把下列有理数:3,8,0.1,0,10,5,0.7填入相应的集合:整数集合,分数集合正数集合,负数集合【教法说明】学生思考后,动笔完成上述第(1)题。一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正从中进一步培养学生分类能力。第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感。(四)归纳小结师:今天我们一起学习了哪些内容?由学生自己小结,然后教师再总结:今天我们一起学习了有理数的定义和两种分类方法要能正确地判断一个数属于哪一类,要特别注意“0”不是正数,但是整数。【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识。再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标。(五)反馈检测(出示投影5)(1)整数和分数统称为_;整数包括_、_和零,分数包括_和_。(2)把下列各数填入相应集合的持号内:3,4,0.5,0,8.6,7整数集合,分数集合正有理数集合,负分数集合(4)选择题:100不是( )A有理数; B自然数; C整数; D负有理数。以小组为单位计分,积分最高的组为优胜组【教法说明】通过反馈检测,既使学生巩固本节课所学内容,又调动学生学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感。七、随堂练习1判断题(1)整数又叫自然数。( )(2)正数和负数统称为有理数。( )(3)向东走20米,就是向西走20米。( )(4)温度下降2,是零上2。( )(5)非负数就是正数,非正数就是负数。( )2在下列适当的空格里打上“”号有理数整 数分 数正整数负分数自然数23.1403把下列各数分别填在相应的大括号里1.8,42,0.01,0,3.1415926,1整数集合分数集合正数集合负数集合自然数集合非负数集合八、布置作业(一)必做题:课本第6页A2、B1、2。(二)思考题:把下列各数填在相应的集合中3.14,5,0,89,2.67,1001有理数集合非负有理数集合负有理数集合九、板书设计随堂练习答案1 2略3整数集体;分数集合;正数集合;负数集合;自然数集合;非负数集合。作业答案(一)必做题:A2、B1、2A2正数:答案不唯一 负数:答案不唯一 B10、7 是整数但不是正数; 0.24 是分数但不是负数2正整数:15 负整数: 12 正数:0.618 15 负数: 0.3 12(二)思考题有理数集合非负有理数集合负有理数集合第八章 8.2.2消元解二元一次方程组(一)知识点1:加减消元法两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.知识点2:列二元一次方程组解实际应用题的步骤列二元一次方程组解应用题与列一元一次方程解应用题的思路基本相似,也是审题、设元、列方程、检验、作答几个步骤.其中与列一元一次方程解应用题不同的是,列一元一次方程解应用题的时候,我们需要考虑设哪个未知量为x,运用哪个相等关系来列方程,而列二元一次方程组解应用题时,如果题目有两个未知量,两个相等关系,我们直接将未知量设为x和y,两个相等关系都用来列方程.考点1:先化简再求方程组的解【例1】解方程组解:原方程组可化为5-,得26y=104,解得y=4.把y=4代入,得x+20=28,解得x=8.所以原方程组的解为点拨对于比较复杂的二元一次方程组,首先将两个方程化简成ax+by=c的形式,然后再使用代入消元法或加减消元法求解.考点2:换元法解方程组【例2】解方程组解:设a=,b=,则原方程组可变形为解得解得点拨:仔细观察方程组,我们不难发现两个方程中均出现和,我们可将和分别看作两个未知数a,b,这个复杂的方程组就可以转化成一个简单的方程组来解决了,这种方法叫做换元法.考点3:轮对称的二元一次方程组的求解策略【例3】解方程组解:+,得27x+27y=81,化简得x+y=3.-,得-x+y=-1.+,得2y=2,解得y=1.-,得2x=4,解得x=2.原方程组的解是点拨:呈现形式的方程组称为轮对称方程组.考点4:一个二元一次方程组与一个二元一次方程同解的问题【例4】若关于x,y的方程组的解也是方程3x+2y=17的解,求m的值.解法一:-,得3y=-6m,即y=-2m.把y=-2m代入,得x-4m=3m,解得x=7m.把x=7m,y=-2m代入3x+2y=17,得21m-4m=17,解得m=1.解法二:3-,得2x+7y=0.根据题意可得:解这个方程组,得把代入,得7-4=3m,解得m=1.点拨:解法一:把m看作已知数,用含m的代数式表示x,y,然后把x,y的值代入3x+2y=17中,得到一个关于m的一元一次方程,解这个一元一次方程即可求出m的值.解法二:由原方程组消去m,得到一个关于x,y的二元一次方程,这个二元一次方程和3x+2y=17组成一个方程组,解出x,y的值,然后代入原方程组中任意一个方程求出m的值.3.2解一元一次方程(一)合并同类项与移项第1课时 用合并同类项的方法解一元一次方程教学目标:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.教学重点:建立方程解决实际问题,会解 “ax+bx=c”类型的一元一次方程.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程:一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为对消与还原.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆:实际问题一元一次方程设问1:如何列方程?分哪些步骤?师生讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:根据分配律,可以把含 x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.三、拓广探索,比较分析学生思考回答:若设去年购买计算机x台,得方程+x+2x=140. 若设今年购买计算机x台,得方程+x=140. 课本P87例2.问题:每相邻两个数之间有什么关系?用x表示其中任意一个数,那么与x相邻的两个数怎样表示?根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?(学生思考、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农发行德阳市旌阳区2025秋招笔试英语题专练及答案
- 工业基础电工讲解课件
- 2025年环保产业绿色技术创新与政策环境分析报告
- 2025年新能源行业供应链风险预警与应对策略研究报告
- 农发行吐鲁番市高昌区2025秋招金融科技岗笔试题及答案
- 2025年新能源行业企业数字化转型中新能源企业品牌建设业务流程再造报告
- 测试工程师面试题及答案解析
- 夜间施工安全教育培训课件
- 美容师初级实操考试题
- 乳制品生产规程培训考试试题
- 部编版小学一年级上册语文带拼音阅读练习题26篇
- 无机及分析化学第2章-化学热力学基础1
- GB/T 2930.1-2017草种子检验规程扦样
- 会计学原理模拟试题一套
- 第一章-宗教社会学的发展和主要理论范式课件
- 国内外新能源现状及发展趋势课件
- 临床常见护理技术操作常见并发症的预防与处理课件
- 高速公路改扩建桥梁拼宽施工技术及质量控制
- 双台110kV主变短路电流计算书
- 你不懂咖啡课件
- 危险物品储存安全隐患排查整治表
评论
0/150
提交评论