



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 探索勾股定理复习 、 教学目标知识与技能:掌握直角三角形的边、角之间分别存在着的关系,熟练地运用直角三角形的勾股定理和其他性质解决实际问题。过程与方法:正确使用勾股定理的逆定理,准确地判断三角形的形状。情感态度价值观:熟悉勾股定理的历史,进一步了解我国古代数学的伟大成就,激发学生的爱国热情,培养探索知识的良好习惯。 教学重点:掌握勾股定理及其逆定理。 教学难点:准确应用勾股定理及其逆定理。(一)基本知识回顾: 1. 直角三角形的边,角之间分别存在着什么关系? 答:角的关系:锐角互余,即A+B=90边的关系:两直角边的平方和等于斜边的平方。直角三角形还有哪些性质? 2. 如何判断一个三角形是直角三角形? 有一个角是直角如果三角形的三边长a、b、c,满足a2+b2=c2,那么这个三角形是直角三角形,满足a2+b2=c2的三个正整数,称为勾股数。3、最短距离:将立体图形展开,利用直角三角形的勾股定理求出最短距离(斜边长)。注意:(1)勾股数是一组数据,必须满足两个条件:满足;三个数都为正整数。(2)1120十个数的平方值:(二)专题总结1、 勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题例 1、已知:一个直角三角形的两直角边长分别是3cm和4cm,求:第三边的长。例 2、已知:一个直角三角形的两边长分别是3cm和4cm,求第三边得长。课堂 训练1、已知ABC中,C=90,若c=34,a:b=8:15,则a= ,b= .2、如图,求下列直角三角形中未知边的长度 x= x= 3、已知直角三角形两直角边分别为5,12,则三边上的高为_ _.题型二 勾股定理逆定理的应用如何判定一个三角形是直角三角形: 先确定最大边(如c); 验证与是否具有相等关系 若=,则ABC是以C为直角的直角三角形;若,则ABC不是直角三角形。例3、若三角形的三边长依次为15,39,36,求这个三角形的面积。例4、如图,在四边形ABCD中,C=90,AB=13,BC=4,CD=3,AD=12,求证:ADBD题型三 展开图与折叠问题BCBACD例5、一只蚂蚁从棱长为1的正方体纸箱的B点沿纸箱爬到D点,那么它所行的最短路线的长是_。例6、如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC沿直线AD折叠,使其落在斜边AB上,且与AE重合,则CD的长为 。题2图题1图例7、如图,在矩形中,将矩形折叠,使点B与点D重合,落在处,若,则折痕AD的长为 。第一章 探索勾股定理复习 学案学习目标:掌握直角三角形的边、角之间分别存在着的关系,熟练地运用直角三角形的勾股定理和其他性质解决实际问题。(一)基本知识回顾:1. 直角三角形的边,角之间分别存在着什么关系? 直角三角形还有哪些性质?2. 如何判断一个三角形是直角三角形? 3、最短距离:将立体图形展开,利用直角三角形的勾股定理求出最短距离(斜边长)。注意:(1)勾股数是一组数据,必须满足两个条件:满足;三个数都为正整数。(2)1120十个数的平方值:(二)专题总结题型二 勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题例1、已知:一个直角三角形的两直角边长分别是3cm和4cm,求:第三边的长。例2、已知:一个直角三角形的两边长分别是3cm和4cm,求第三边得长。题型二 勾股定理逆定理的应用如何判定一个三角形是直角三角形: 先确定最大边(如c); 验证与是否具有相等关系 若=,则ABC是以C为直角的直角三角形;若,则ABC不是直角三角形。例3、若三角形的三边长依次为15,39,36,求这个三角形的面积。例4、如图,在四边形ABCD中,C=90,AB=13,BC=4,CD=3,AD=12,求证:ADBD题型三 展开图与折叠问题BCBACD例5、一只蚂蚁从棱长为1的正方体纸箱的B点沿纸箱爬到D点,那么它所行的最短路线的长是_。例6、如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC沿直线AD折叠,使其落在斜边AB上,且与AE重合,则CD的长为 。题1图例7、如图,在矩形中,将矩形折叠,使点B与点D重合,落在处,若,则折痕AD的长为 。课
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第一单元 富强与创新 单元检测题(含答案)-2025-2026学年九年级上册道德与法治
- 2025河南郑州大学招聘(博士)500人模拟试卷(含答案详解)
- 2025年智能交通系统中的车路协同技术
- 2025河南郑州市中华保险招聘考前自测高频考点模拟试题完整答案详解
- 2025广东广州市荔湾区东沙街环卫站招聘办公室管理员2人模拟试卷及答案详解(夺冠系列)
- 2025江苏无锡市锡山区卫生健康系统招聘事业编制高层次人才21人(长期)模拟试卷有完整答案详解
- 2025贵州省职工医院第十三届贵州人博会引进人才13人模拟试卷及答案详解(易错题)
- 2025嘉兴市众业供电服务有限公司招聘74人模拟试卷及答案详解(历年真题)
- 2025年安徽师范大学出版社招聘4人模拟试卷及答案详解(名师系列)
- 2025北京儿童医院顺义妇儿医院招聘编制外6人考前自测高频考点模拟试题附答案详解(模拟题)
- 《化工设备设计原理与实例》课件
- 新版机动车交通事故责任强制保险合同
- T-CTSS 3-2024 茶艺职业技能竞赛技术规程
- 品管圈PDCA案例-普外科提高甲状腺手术患者功能锻炼合格率
- 2022-2024年营养指导员考试真题及答案合集
- 《电工基础(第2版)》中职全套教学课件
- 2024-2025学年江苏省南通市海安市高二(上)月考物理试卷(10月份)(含答案)
- ISO9001-2015质量管理体系内审培训课件
- 初中物理晋升高级(一级)职称水平考试模拟试卷有答案解析共三套
- CJT 340-2016 绿化种植土壤
- 《无线电失效程序》课件
评论
0/150
提交评论