



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
整式的乘法(基础)【学习目标】1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算.【要点梳理】要点一、单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用. (2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式. (3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成. (4)三个或三个以上的单项式相乘同样适用以上法则.要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即.要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题. (2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同. (3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号. (4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.要点三、多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:.【典型例题】类型一、单项式与单项式相乘1、计算:(1);(2);(3)【思路点拨】前两个题只要按单项式乘法法则运算即可,第(3)题应把与分别看作一个整体,那么此题也属于单项式乘法,可以按单项式乘法法则计算【答案与解析】解: (1)(2)(3) 【总结升华】凡是在单项式里出现过的字母,在其结果里也应全都有,不能漏掉 举一反三:【变式】(2014甘肃模拟)计算:2m2(2mn)(m2n3)【答案】解:2m2(2mn)(m2n3)=2(2)()(m2mnm2n3)=2m5n4类型二、单项式与多项式相乘2、 计算:(1);(2);(3);【答案与解析】解:(1)(2)(3)【总结升华】计算时,符号的确定是关键,可把单项式前和多项式前的“”或“”号看作性质符号,把单项式乘以多项式的结果用“”号连结,最后写成省略加号的代数和举一反三:【变式1】【答案】解:原式【变式2】若为自然数,试说明整式的值一定是3的倍数【答案】解: 因为3能被3整除,所以整式的值一定是3的倍数类型三、多项式与多项式相乘3、计算:(1);(2);(3);(4)【答案与解析】 解:(1)(2)(3)(4)【总结升华】多项式乘以多项式时须把一个多项式中的每一项乘以另一个多项式的每一项,刚开始时要严格按法则写出全部过程,以熟悉解题步骤,计算时要注意的是:(1)每一项的符号不能弄错;(2)不能漏乘任何一项4、(2014秋花垣县期末)解方程:(x+7)(x+5)(x+1)(x+5)=42【思路点拨】先算乘法,再合并同类项,移项,系数化成1即可【答案与解析】解:(x+7)(x+5)(x+1)(x+5)=42,x2+12x+35(x2+6x+5)=42,6x+30=42,6x=12,x=2【总结升华】本题考查了解一元一次方程,多项式乘以多项式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年解约职员合同隐私保障协议
- 2025版商品房买卖合同示范文本
- 2024年黑龙江省哈尔滨市中西面点师培训试卷及答案
- 2025年猪舍建设项目合同范本
- 煤矿新员工试题答案
- 2025年高三下学期班主任工作计划
- 浙江省2025年皮肤科主治医师(放射科)模拟试题
- 2025年度智能化安防系统升级改造服务终止协议书
- 2025年金融科技项目股权投资及联合研发合同范本
- 2025年绿色能源供暖设施采购与安装服务合同
- GB/T 14691-1993技术制图字体
- 《夯实法治基石》设计 省赛一等奖
- 食材配送服务及应急保障方案
- 常见婚姻家庭纠纷及调解技巧课件
- 中国老年人功能性消化不良诊治共识解读专家版
- 2023年8月17日云南省临沧市遴选公务员笔试真题及解析
- 飞机火灾教案课件
- 遗传改造微生物制造食品和饲料的监管要求及欧盟授权案例分析
- ISO37000-2021组织治理-指南(雷泽佳译2022)
- 口腔牙体牙髓病学第四章龋病的治疗课件
- 外科护理学(全套课件727P)
评论
0/150
提交评论