


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2. 3变量间的相关关系(讲)一、相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。【说明】函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?2、某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子。你认为这样的结论可靠吗?如何证明这个问题的可靠性?分析:(1)吸烟只是影响健康的一个因素,对健康的影响还有其他的一些因素,两者之间非函数关系即非因果关系; (2)不对,这也是相关关系而不是函数关系。上面提到了很多相关关系,那它们之间的相关关系强还是弱?我们下面来研究一下。二、散点图探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:年龄23273941454950脂肪9.517.821.225.927.526.328.2 年龄53545657586061脂肪29.630.231.430.833.535.234.6其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数。思考探究:1、对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?2、为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗? 在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形称为散点图。3、观察人的年龄的与人体脂肪含量散点图的大致趋势,有什么样的特点?阅读课本,这种相关关系我们称为什么?还有没有其他的相关关系?它又有怎样的特点?三、线性相关、回归直线方程和最小二乘法在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点? 如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线。我们所画的回归直线应该使散点图中的各点在整体上尽可能的与其接近。我们怎么来实现这一目的呢?说一说你的想法。设所求的直线方程为=bx+a,其中a、b是待定系数。则i=bxi+a(i=1,2,n).于是得到各个偏差yii =yi(bxi+a)(i=1,2,n)显见,偏差yii 的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n个偏差的平方和Q=(y1bx1a)2+(y2bx2a)2+(ynbxna)2表示n个点与相应直线在整体上的接近程度。记Q=这样,问题就归结为:当a、b取什么值时Q最小,a、b的值由下面的公式给出:其中=,=,a为回归方程的斜率,b为截距。求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫最小二乘法。【例题精析】有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的饮料杯数与当天气温的对比表: 摄氏温度-504712151923273136热饮杯数15615013212813011610489937654(1)画出散点图;(2)从散点图中发现气温与热饮杯数之间关系的一般规律;(3)求回归方程;(4)如果某天的气温是2,预测这天卖出的热饮杯数。解: (4)当x=2时,y=143.063反思总结,当堂检测。1、求样本数据的线性回归方程,可按下列步骤进行:(1)计算平均数,;(2)求a,b;(3)写出回归直线方程。2、回归方程被样本数据惟一确定,对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性.。3、对于任意一组样本数据,利用上述公式都可以求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年网络安全行业SDGs目标实施策略研究报告
- 私人租车给公司合同范本
- 香港签署cepa协议书
- 特殊发热膜销售合同范本
- 签股权协议在哪签订合同
- 电厂设备装卸合同协议书
- 机关食堂供货合同协议书
- 父子房屋公证合同协议书
- 物流运输合作合同协议书
- 节电设备安装协议书模板
- 医院检验科实验室生物安全程序文件SOP
- 货币金融学朱新蓉课后习题答案
- 道路建筑材料电子教案(全)
- GB/T 17285-2022电气设备电源特性的标记安全要求
- GB/T 14996-2010高温合金冷轧板
- 华南农业大学2023年840兽医传染病学考研真题(回忆版)
- 城市道路无障碍设施课件
- 品质意识,品质基础知识培训
- 教师政审个人现实表现材料范文(通用5篇)
- QC降低矿山法围岩隧道爆破超挖量
- 校园文化建设方案(共60张PPT)
评论
0/150
提交评论