广西北流市民乐镇第一初级中学九年级数学上册 22.1 一元二次方程(第1课时)课件 新人教版.ppt_第1页
广西北流市民乐镇第一初级中学九年级数学上册 22.1 一元二次方程(第1课时)课件 新人教版.ppt_第2页
广西北流市民乐镇第一初级中学九年级数学上册 22.1 一元二次方程(第1课时)课件 新人教版.ppt_第3页
广西北流市民乐镇第一初级中学九年级数学上册 22.1 一元二次方程(第1课时)课件 新人教版.ppt_第4页
广西北流市民乐镇第一初级中学九年级数学上册 22.1 一元二次方程(第1课时)课件 新人教版.ppt_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

22 1一元二次方程 第1课时 问题情景 1 想一想 要设计一座高2m的人体雕像 使它的上部 腰以上 与下部 腰以下 的高度比 等于下部与全部的高度比 求雕像的下部应设计为高多少米 a c b 雕像上部的高度ac 下部的高度bc应有如下关系 分析 即 设雕像下部高xm 于是得方程 整理得 x 2 x 引言中的方程 有一个未知数x x的最高次数是2 像这样的方程有广泛的应用 请看下面的问题 x2 2x 4 0 问题1 如图 有一块矩形铁皮 长100cm 宽50cm 在它的四角各切一个同样的正方形 然后将四周突出部分折起 就能制作一个无盖方盒 如果要制作的无盖方盒的底面积为3600cm2 那么铁皮各角应切去多大的正方形 设切去的正方形的边长为xcm 则盒底的长为 100 2x cm 宽为 50 2x cm 根据方盒的底面积为3600cm2 得 100 2x 50 2x 3600 4x2 300 x 1400 0 化简 得x2 75x 350 0 由方程 可以得出所切正方形的具体尺寸 整理 得 想一想 问题2 要组织一次排球邀请赛 参赛的每两个队之间都要比赛一场 根据场地和时间等条件 赛程计划安排7天 每天安排4场比赛 比赛组织者应邀请多少个队参赛 解 设应邀请x个队参赛 每个队要与其它 x 1 个队各赛1场 由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛 所以全部比赛共场 列方程 整理 得 化简 得 由方程 可以得出参赛队数 全部比赛共4 7 28场 想一想 这三个方程都不是一元一次方程 那么这两个方程与一元一次方程的区别在哪里 它们有什么共同特点呢 特点 都是整式方程 只含一个未知数 未知数的最高次数是2 探究新知 一元二次方程的概念 像这样的等号两边都是整式 只含有一个未知数 一元 并且未知数的最高次数是2 二次 的方程叫做一元二次方程 quadraticequationinoneunknown 一元二次方程的一般形式 一般地 任何一个关于x的一元二次方程都可以化为的形式 我们把 a b c为常数 a 0 称为一元二次方程的一般形式 为什么要限制a 0 b c可以为零吗 想一想 ax2 bx c 0 a 0 二次项系数 一次项系数 常数项 例题讲解 例1判断下列方程是否为一元二次方程 1 2 3 4 例2 将方程3x x 1 5 x 2 化成一元二次方程的一般形式 并写出其中的二次项系数 一次项系数及常数项 3x2 3x 5x 10 移项 合并同类项 得一元二次方程的一般形式 3x2 8x 10 0 其中二次项系数为3 一次项系数为 8 常数项为 10 解 去括号 得 例题讲解 1 将下列方程化成一元二次方程的一般形式 并写出其中的二次项系数 一次项系数及常数项 一般式 二次项系数为 一次项系数 4 常数项 1 一般式 二次项系数为4 一次项系数0 常数项 81 课内练习 一般式 二次项系数为4 一次项系数8 常数项 25 一般式 二次项系数为3 一次项系数 7 常数项1 课内练习 2 根据下列问题 列出关于x的方程 并将其化成一元二次方程的一般形式 1 4个完全相同的正方形的面积之和是25 求正方形的边长x 2 一个矩形的长比宽多2 面积是100 求矩形的长x 3 把长为1的木条分成两段 使较短一段的长与全长的积 等于较长一段的长的平方 求较短一段的长x 4 一个直角三角形的斜边长为10 两条直角边相差2 求较长的直角边长x 解 1 设其边长为x 则面积为x2 课内练习 2 设长为x 则宽 x 2 x x 2 100 x2 2x 100 0 3 设其中的较短一段为x 则另较长一段为 1 x x2 3x 1 0 x 1 1 x 2 4x2 25 4 课内练习 1 一元二次方程的概念 只含有一个未知数 并且未知数的最高次数是2的整式方程叫

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论