两条直线的交点坐标教案doc.doc_第1页
两条直线的交点坐标教案doc.doc_第2页
两条直线的交点坐标教案doc.doc_第3页
两条直线的交点坐标教案doc.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.3.1 两条直线的交点坐标教学设计教材分析:普通高中课程标准试验教科书 人民教育出版社 A版 教学2(必修)第三章第三节第一课时:两条直线的交点坐标。本节课是在“直线的方程、直线的位置关系”等内容的基础上,进一步研究“两条直线的交点”的,它是前面所学内容的巩固和深化,也是后继学习曲线关系的基础,本节课的教学任务就是通过几何直观,理解直线交点与方程组的解之间的关系,掌握用解方程组的方法求交点坐标。学情分析:1、两条直线交点坐标实际上就是对应二元一次方程组的解,所以,求交点坐标的关键就是求对应二元一次方程的解。因此对学生以往解方程组的方法要再次复习提高。2.学生思维活跃,参与意识、自主探究能力较强,故采用启发、探究式教学。3.学生的抽象概括能力和空间想象力有待提高,故采用多媒体辅助教学。教学目标:1、理解求两条直线交点的思想方法,即解方程组的转化思想,能正确地通过解方程确定坐标并通过求交点坐标判断两条直线的位置关系。2、通过沟通方程组的解的情况与相应两条直线的交点的个数(位置关系)情况,进一步渗透数形结合、坐标法思想。3、通过探究过定点直线系的方程,培养运动转化思想。教学重点:对转化思想的理解,求两条直线交点即解方程组确定交点坐标。教学难点:过定点直线系的定点求法,对含参数解讨论。教学方法:启发引导式教学设计思路:设疑:已知两条直线相交,如何求两条直线的交点 通过解方程求交点坐标,然后判断两直线的位置关系(例2)求交点坐标,然后探究直线系的集合特征课堂练习课后作业师生总结求两条直线交点的方法(例1)复习点与坐标的对应关系教学过程:一、复习准备:1. 讨论:如何用代数方法求方程组的解?2. 讨论:两直线交点与方程组的解之间有什么关系?二、讲授新课:1. 教学直线上的点与直线方程的解的关系:(1) 讨论:直线上的点与其方程Ax+By+C=0的解有什么样的关系?(2) 练习:完成书上P102的填表. 几何元素代数表示点P坐标直线方程点在直线上坐标满足方程点是、的交点坐标满足方程组上述情况表明:两直线的交点(即公共点)坐标满足由两条直线方程所组成的方程组。那么,如果两条直线相交,怎样求交点坐标?(3)直线L上每一个点的坐标都满足直线方程,也就是说直线上的点的坐标是其方程的解。反之直线L的方程的每一组解都表示直线上的点的坐标。2. 教学两直线的交点坐标与方程组的解之间的关系(1)讨论:点A(-2,2)是否在直线L1:3x+4y-2=0上?点A(-2,2)是否在直线L2:2x+y+2=0上?(2) A在L1上,所以A点的坐标是方程3x+4y-2=0的解,又因为A在L2上,所以A点的坐标也是方程2x+y+2=0的解。即A的坐标(-2,2)是这两个方程的公共解,因此(-2,2)是方程组 的解.(3)讨论:点A和直线L1与L2有什么关系?为什么?3、探究如何判断两直线、的位置关系,通过解方程组确定交点坐标已知:,:,将方程联立,得,对于这个方程组解的情况分三种讨论:(1)若方程组有唯一解,则、有唯一的公共点,此解就是交点坐标,即相交(2)若方程组无解,则、没有公共点,即平行;(3)若方程组有无数多个解,则、有无数多个公共点,即重合。上述情况表明:通过解方程组可以确定交点坐标;通过求交点可以确定两直线位置关系,即观察方程组解的不同情况得到、相交、平行、重合三种关系。即有如下结论:有唯一解相交无解平行有无数个解重合(4)出示例1: 求下列两条直线的交点:L1:3x+4y-2=0,L2: 2x+y+2=0解:解方程组L1与L2的交点是M(-2,2) (5)出示例2:判断下列各对直线的位置关系。如果相交,求出交点坐标。(1):,:(2):,:(3):,:4、直线系探究问题:当变化时,方程表示什么图形?图形有何特点?探究:取,得直线,作出图形可知,所有直线都过一个定点,该点为结论:表示过:与:交点即定点的直线系。总结提高:若:、:相交于,则方程表示过与交点的直线系。课堂练习:求证:不论取什么实数,直线都过一个定点,并求这个定点坐标。解法一:给出两个特殊值,得到直线系中的两条直线,求出两条直线的交点。解法二:由于方程对任意的都成立,那么就以为未知数,整理为关于的一元一次方程,再由一元一次方程有无数解的条件求得定点的坐标。三、小结与作业1、直线与直线的位置关系及其判断(解方程组求交点坐标、系数是否成比例)2、求两直线的交点坐标,解二元一次方程组,能将几何问题转化为代数问题来解决,并

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论