




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数的概念导数的概念 教学设计教学设计 安阳县实验中学安阳县实验中学 申现军申现军 一 内容和内容解析一 内容和内容解析 一 内容 导数的概念 二 内容解析 导数是微积分的核心概念之一 它是一种特殊的极限 反映了函数变化的快慢 程度 导数是求函数的单调性 极值 曲线的切线以及一些优化问题的重要工具 同 时对研究几何 不等式起着重要作用 导数概念是我们今后学习微积分的基础 同时 导数在物理学 经济学等领域都有广泛的应用 是开展科学研究必不可少的工具 教材安排导数内容时 学生是没有学习极限概念的 教材这样处理的原因 一方 面是因为极限概念高度抽象 不适合在没有任何极限认识的基础上学习 所以 让学 生通过学习导数这个特殊的极限去体会极限的思想 这为今后学习极限提供了认识基 础 另一方面 函数是高中的重要数学概念 而导数是研究函数的有力工具 因此 安排先学习导数方便学生学习和研究函数 二 学生学情分析二 学生学情分析 1 1 有利因素有利因素 学生在上节课借助高台跳水和气球膨胀率问题学习了平均变化率 本节 课继续以高台跳水问题为背景 进行从平均速度到瞬时速度 从瞬时速度到导数的学 习 并为即将学习的导数的几何意义 导数的有关计算以及导数的应用等知识做铺垫 了大量的关于函数变化率的经验 另外 正一中学学生思维比较活跃 对数学新内容 的学习 有相当的兴趣和积极性 这为本课的学习奠定了基础 2 2 不利因素不利因素 导数概念建立在极限基础之上 超乎学生的直观经验 抽象度高 再者 本课内容思维量大 对类比归纳 抽象概括 联系与转化的思维能力有较高的要求 学生学习起来有一定难度题基本思想 三 目标和目标解析三 目标和目标解析 1 使学生认识到 当时间间隔越来越小时 运动物体在某一时刻附近的平均速度趋向 于一个常数 并且这个常数就是物体在这一时刻的瞬时速度 2 使学生通过运动物体瞬时速度的探求 体会函数在某点附近的平均变化率的极限就 是函数在该点的瞬时变化率 并由此建构导数的概念 2 3 掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤 4 通过导数概念的构建 使学生体会极限思想 为将来学习极限概念积累学习经验 5 通过导数概念的教学教程 使学生体会到从特殊到一般的过程是发现事物变化规律 的重要过程 上述目标中 目标 1 是形成概念的基础 它提供了一个具体的导数模型 目标 2 是 教学 重点 是本节课要花近一半时间去完成的目标 目标 3 体现了算法思想 这 是教学中应该充分重视的方面 目标 4 和 5 体现了数学育人的重要价值 四 教学问题诊断分析四 教学问题诊断分析 要使学生能通过观察发现运动的物体在某一 时刻的平均速度的极限是一个不 变的常数 而且这个常数就是物体在这一时刻的瞬时速度 一个非常难突破的问题就 是大量平均速度的计算问题 为解决这个问题 在教学时为每个学生准备一台 Ti nspire CAS 图形计算器 利用这种计算器的 CAS 功能 可以在较短的时间内解决 计算问题 从而使学生有更多的时间用于观察与发现 另外 从具体的模型中提炼出一般的概念的困难在于 具体模型的数量 因此 设计本 节课的教学时 在教材的基础上增加了计算跳水运动员瞬时速度的数目 以此大大方 便了学生归纳与概括 五 教学策略分析五 教学策略分析 本节课在教学方法的选择上 充分尊重学生认知 事物的基本规律 强调教师的启 发与学生的参与度 给学生操作感知 观察发现的时间充分 由于技术的介入 大大 方便了学生获得导数概念的表象 因此学生通过表象抽象出导数概念的过程自然到位 并且能帮助学生更准确地理解导数的本质 六 教学支持条件分析六 教学支持条件分析 根据本节课的内容特点 为了更直观 形象地突出重点 突破难点 教学过程中可 充分发挥信息技术的作用 体现平均速度与瞬时速度 瞬时变化率与导数之间的联系 更好的分析这个过程 用逼近的方法去解决导数概念的问题 七 教学过程七 教学过程 一 一 引入新课引入新课 师 同学们 2017 年应该有很多精彩的瞬间 下面我们一起来回顾两个精彩的画面 一起看视频 这是 4 月 22 号天舟一号和天宫二号成功对接的现场画面 那么它们在运 3 行的过程中 它们的速度都会急剧的变化 要想对接成功 我们必须研究它们每时每 刻的速度 再来看第二个视频这是今年十三届全运会上一名施廷懋的完美一跳 她是 巴西奥运会会上获得两块金牌的运动员 为我们国家赢得了荣誉 获得了冠军 关于 调水问题 上节课我们就提到了一个问题 回顾上节课中的探究问题 在高台跳水运动中 运动员相对水面的高度 h 单位 m 与起跳后的时间 t 单 位 s 存在函数关系 2 4 96 510h ttt 计算运动员在 这段时间里的平均速度 思考下面的问题 师 运动员在这段时间里是静止的吗 生 不是 师 你认为用平均速度描述运动员的运动状态符合实际吗 生 不符合实际 师 看来平均速度不能够描述运动员在每一时刻的速度 尤其在训练的过程中 我 想要提高他的成绩 肯定关键时刻的速度是我们所需要知道的 比如他的起跳速度 他的落水速度 那么物体在某一时刻的速度我们称为 瞬时速度 师 对瞬时速度的研究 需要对导数进行研究 这就是我们今天要研究的课题 导 数的概念 师 如何求运动员在时刻的瞬时速度 2t 二 初步探索 二 初步探索 时刻的瞬时速度2t 师 问题一 请大家思考如何求运动员在时刻的瞬时速度 2t 师 要求 小组讨论如何求出时的瞬时速度 2t 设计意图设计意图 学生在上节课已经知道这个符号的含义 在这里不难想到用来x t 表示时间的改变量 并给出科学的的取值 t 师 问题二 当 时 0 01t 0 001t 0 00010 01t 0 001t 22hth v t 65 0 49 t 4 的值是多少 师 要求学生用计算器进行计算出的值 并进行小组展示 22hth v t 设计意图设计意图 学生对概念的认知需要借助大量的直观数据 学生利用计算器 分组 完成问题二 有利于培养学生的动手操作能力同时激发他们的求知欲 师 问题三 观察数据 当趋近于时 平均速度有怎样的变化趋势 t 0 在各组计算出结果后 用幻灯片展示 并给出更多趋于时 的值 t 0v 引导学生观察数据并得出结论 当时间间隔无限变小时 平均速度 就无限趋 t v 近于时的瞬时速度 因此 运动员在时的瞬时速度是m s 2t 2t 13 1 为了表述方便 用符号来表示 总结归纳 告诉学生 0 22 lim13 1 t ftf t 该符号的写法 读法 含义 设计意图设计意图 让学生第一次利用体会逼近的思想完成问题三 三三 深入探究深入探究 时刻的瞬时速度 0 t 师 问题四 运动员在某个时刻的瞬时速度如何表示呢 0 t 师 小组讨论 运动员在某个时刻的瞬时速度如何表示 学生意识到将代替 0 t 0 t2 可类比 得到 00 0 lim t f ttf t t 设计意图设计意图 第二次体会逼近的思想 并用特殊与一般的思想得到时刻的瞬时速度 0 t 这是学生思维的一次提升 四 形成概念 四 形成概念 师 问题五 如果将跳水问题中的函数用来表示 那么函数在 处 f x f x 0 xx 的瞬时变化率如何表示 学生通过体会 时刻瞬时速度的共同特征 不难概括出函数在2t 0 tt f x 处的瞬时变化率的表示方法 给出导数的概念 0 xx 5 生 学生简单描述导数的概念 师 一般地 函数在 处的瞬时变化率 f x 0 xx 我们称它为函数在处的导数 记 x xfxxf x y xx limlim 00 00 xfy 0 xx 作 或 0 fx 0 x xy 即 00 0 00 limlim xx f xxf xy fx xx 设计意图设计意图 再次通过类比 抛开问题的实际意义 抽象为数学问题 来定义导数 这是学生思维的又一次上升 五 典例精析 五 典例精析 例 1 物体自由落体的运动方程是s t gt2 g 9 8 m s2 求物体在t 3 s 这 1 2 一时刻的瞬时速度 设计意图设计意图 在学生建立起导数概念后 明确用定义求导数的方法之后 进行强化训 练 渗透算法思想 加深对导数概念的理解 强化对重点知识的巩固 例 2 将原油精炼为汽油 柴油 塑胶等各种不同产品 需要对原油进行冷却和加 热 如果第h 时 原油的温度 单位 为 x oC 2 715 08f xxxx 计算第h 和第h 时 原油温度的瞬时变化率 并说明它们的意义 26 该例题中第h 时原油温度的瞬时变化率的求解过程用幻灯片演示 然后让学生在2 练习本上独立完成第h 时原油温度的瞬时变化率的解答过程 选一名学生板演 6 设计意图设计意图 导数概念的形成由一个实际问题开始 又将其应用于实际问题 前后呼 应 同时让学生第三次体会逼近的思想 六六 练习巩固练习巩固 比一比 计算第 3h 和第 5h 时原油温度的瞬时变换率 并说明它们的意义 此环节几个小组进行比赛 比一比哪组最先完成 6 设计意图设计意图 这样做 既能达到巩固了导数的概念的目的 又调动了学生的积极性 七七 归纳总结归纳总结 知识方面 瞬时变化率的求法及导数的概念和求法 思想方法 逼近的思想 特殊与一般的思想 类比的方法 设计意图设计意图 由学生总结这节课所学的主要知识和方法 可以加深对导数概念的理解 八八 作业布置作业布置 必做 第 79 页习题 A 组第 2 3 4 题 选做 思考第 80 页习题 B 组第 1 题 预习 3 1 3 导数的几何意义 设计意图设计意图 为了让不同层次的学生都有收获 我设计了必做题和选做题 八 板书设计八 板书设计 板 书 设 计 3 1 2 导数的概念 导数的概念 一般地 函数在处的瞬时变化率是 yf x 0 xx 00 00 limlim xx f xxf xy xx 我们称它为函数在处的导数 0 xx 记作或 0 fx 0 x x y 即 0 fx 0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论