




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1课时椭圆及其性质基础题组练1已知正数m是2和8的等比中项,则圆锥曲线x21的焦点坐标为()A(,0) B(0,)C(,0)或(,0) D(0,)或(,0)解析:选B.因为正数m是2和8的等比中项,所以m216,即m4,所以椭圆x21的焦点坐标为(0,),故选B.2(2019高考北京卷)已知椭圆1(ab0)的离心率为,则()Aa22b2 B3a24b2 Ca2b D3a4b解析:选B.由题意得,所以,又a2b2c2,所以,所以4b23a2.故选B.3曲线1与曲线1(kb0)的左、右焦点分别为F1,F2,离心率为,过F2的直线l交C于A,B两点,若AF1B的周长为12,则C的方程为()A.y21 B.1C.1 D1解析:选D.由椭圆的定义,知|AF1|AF2|2a,|BF1|BF2|2a,所以AF1B的周长为|AF1|AF2|BF1|BF2|4a12,所以a3.因为椭圆的离心率e,所以c2,所以b2a2c25,所以椭圆C的方程为1,故选D.5(2020昆明市诊断测试)已知F1,F2为椭圆C:1(ab0)的左、右焦点,B为C的短轴的一个端点,直线BF1与C的另一个交点为A,若BAF2为等腰三角形,则()A. B. C. D3解析:选A.如图,不妨设点B在y轴的正半轴上,根据椭圆的定义,得|BF1|BF2|2a,|AF1|AF2|2a,由题意知|AB|AF2|,所以|BF1|BF2|a,|AF1|,|AF2|.所以.故选A.6若椭圆C:1(ab0)的短轴长等于焦距,则椭圆的离心率为 解析:由题意可得bc,则b2a2c2c2,ac,故椭圆的离心率e.答案:7(2020贵阳模拟)若椭圆1(ab0)的离心率为,短轴长为4,则椭圆的标准方程为 解析:由题意可知e,2b4,得b2,所以解得所以椭圆的标准方程为1.答案:18(2019高考全国卷)设F1,F2为椭圆C:1的两个焦点,M为C上一点且在第一象限若MF1F2为等腰三角形,则M的坐标为 解析:通解:由椭圆C:1,得c4,不妨设F1,F2分别为左、右焦点,则由题意知|MF1|F1F2|2c8,于是由椭圆的定义得|MF1|MF2|12,所以|MF2|12|MF1|4,易知MF1F2的底边MF2上的高h2,所以|MF2|h|F1F2|yM,即428yM,解得yM,代入椭圆方程得xM3(舍去)或xM3,故点M的坐标为(3,)优解:不妨设F1,F2分别为左、右焦点,则由题意,得|MF1|F1F2|8,由椭圆的焦半径公式得|MF1|exM6xM68,解得xM3,代入椭圆方程得yM,故点M的坐标为(3,)答案:(3,)9已知椭圆的长轴长为10,两焦点F1,F2的坐标分别为(3,0)和(3,0)(1)求椭圆的标准方程;(2)若P为短轴的一个端点,求F1PF2的面积解:(1)设椭圆的标准方程为1(ab0),依题意得因此a5,b4,所以椭圆的标准方程为1.(2)易知|yP|4,又c3,所以SF1PF2|yP|2c4612.10分别求出满足下列条件的椭圆的标准方程(1)与椭圆1有相同的离心率且经过点(2,);(2)已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5,3,过P且与长轴垂直的直线恰过椭圆的一个焦点解:(1)由题意,设所求椭圆的方程为t1或t2(t1,t20),因为椭圆过点(2,),所以t12,或t2.故所求椭圆的标准方程为1或1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为1(ab0)或1(ab0),由已知条件得解得a4,c2,所以b212.故椭圆的方程为1或1.综合题组练1(2020合肥市第二次质量检测)已知椭圆1(ab0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2BAP,则该椭圆的离心率是()A. B. C. D解析:选D.如图,由题意知,P为以F1A为直径的圆上一点,所以F1PAP,结合F2BAP知F1PF2B.又|F1B|F2B|,所以BF1F2为等腰直角三角形,所以|OB|OF2|,即bc,所以a2b2c22c2,即ac,所以椭圆的离心率e,故选D.2(2019高考全国卷)已知椭圆C的焦点为F1(1,0),F2(1,0),过F2的直线与C交于A,B两点若|AF2|2|F2B|,|AB|BF1|,则C的方程为()A.y21 B.1C.1 D1解析:选B.由题意设椭圆的方程为1(ab0),连接F1A,令|F2B|m,则|AF2|2m,|BF1|3m.由椭圆的定义知,4m2a,得m,故|F2A|a|F1A|,则点A为椭圆C的上顶点或下顶点令OAF2(O为坐标原点),则sin .在等腰三角形ABF1中,cos 2,所以12()2,得a23.又c21,所以b2a2c22,椭圆C的方程为1.故选B.3已知椭圆C:x22y24.(1)求椭圆C的离心率;(2)设O为原点若点A在直线y2上,点B在椭圆C上,且OAOB,求线段AB长度的最小值解:(1)由题意,椭圆C的标准方程为1.所以a24,b22,从而c2a2b22.因此a2,c.故椭圆C的离心率e.(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x00.因为OAOB,所以0,即tx02y00,解得t.又x2y4,所以|AB|2(x0t)2(y02)2(y02)2xy4x44(0x4)因为4(0x4),当且仅当x4时等号成立,所以|AB|28.故线段AB长度的最小值为2.4(2019高考全国卷)已知F1,F2是椭圆C:1(ab0)的两个焦点,P为C上的点,O为坐标原点(1)若POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1PF2,且F1PF2的面积等于16,求b的值和a的取值范围解:(1)连接PF1.由POF2为等边三角形可知在F1PF2中,F1PF290,|PF2|c,|PF1|c,于是2a|PF1|PF2|(1)c,故C的离心率e1.(2)由题意可知,满足条件的点P(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年节能环保汽车零部件加工技术保密协议书
- 2025全球医疗器械市场拓展合作框架协议
- 2025现代农业科技企业专项资金互助贷款合同范本
- 家庭农场与合作社业务合作协议
- 2025年智能穿戴设备定制生产及销售合作协议
- 2025年智能车牌共享及综合汽车租赁服务合同
- 2025年高速公路运营公司财务风险防控及管理体系升级合同
- 2025年人工智能领域研发资助合同书
- 2025年智能温室设施租赁服务合作协议
- 2025年金融业智能客服系统开发与维护一体化服务协议
- 基于模型的系统工程(MBSE)及MWORKS实践 课件 4 MBSE教材讲义 第四章 设计仿真一体化的MBSE方法
- 金融进校园小学
- 《中国世界遗产》课件
- 糖尿病眼底病变
- 2024年县特殊教育学校德育工作计划样本(2篇)
- 车辆gps管理制度
- 住宅小区园林景观绿化工程施工组织设计方案
- 中式烹调师高级技师考试模拟题与参考答案
- 《童年》课外阅读备课教案
- 事业单位考试职业能力倾向测验(医疗卫生类E类)试题与参考答案
- 人教版5年级上册数学全册课件(2022年9月新版)
评论
0/150
提交评论