八年级数学上册 专题三 勾股定理的应用课件 (新版)浙教版.ppt_第1页
八年级数学上册 专题三 勾股定理的应用课件 (新版)浙教版.ppt_第2页
八年级数学上册 专题三 勾股定理的应用课件 (新版)浙教版.ppt_第3页
八年级数学上册 专题三 勾股定理的应用课件 (新版)浙教版.ppt_第4页
八年级数学上册 专题三 勾股定理的应用课件 (新版)浙教版.ppt_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一 勾股定理与其他知识的综合应用 教材母题 教材p75作业题第5题 一个屋架形状如图 已知ac 10m bc 12m ac bc cd ab于点d 求立柱cd的长和点d的位置 结果精确到0 1m 思想方法 1 在直角三角形中利用勾股定理根据已知边求未知边 2 在直角三角形中 可利用面积关系求线段的长 即面积法 变形1在rt abc中 c 90 ac 9 bc 12 则点c到ab的距离是 a 变形2已知a b c是 abc的三边长 如果有 a 5 2 b 12 c2 26c 169 0 那么 c 度 90 变形4如图 已知等腰rt abc的直角边长为1 以rt abc的斜边ac为直角边 画第二个等腰rt acd 再以rt acd的斜边ad为直角边 画第三个等腰rt ade 依此类推直到第五个等腰rt afg 则由这五个等腰直角三角形所构成的图形的面积为 变形5如图 折叠长方形的一边ad 使点d落在bc边上的点f处 折痕与cd边交于点e 已知ab 8cm bc 10cm 求ce的长 二 勾股定理在实际生活中的应用 教材母题 教材p75作业题第4题 如图 甲船以15千米 时的速度从港口a向正南方向航行 乙船以20千米 时的速度 同时从港口a向正东方向航行 行驶2小时后 两船相距多远 思想方法 利用勾股定理解决实际生活问题 主要是根据实际问题 建立直角三角形模型 把实际问题转化为直角三角形的问题 变形1求如图所示 单位 mm 长方形零件上两圆孔中心a和b的距离 精确到0 1mm 变形2 中华人民共和国道路交通管理条例 规定 汽车在城市街路上的行驶速度不得超过70km h 如图 一辆汽车在一条城市街路上直道行驶 某一时刻刚好行驶到路对面车速检测仪a处的正前方30m的c处 过了2s后 测得汽车与车速检测仪的距离为50m 这辆汽车超速了吗 参考数据转换 1m s 3 6km h 变形3小明想知道学校旗杆的高 他发现旗杆上的绳子垂到地面还多了1m 当他把绳子的下端拉开5m后 发现下端刚好接触地面 求旗杆的高 设旗杆ab的高为xm 则ac为 x 1 m 依题意得x2 52 x 1 2 x 12 即旗杆的高为12m 变形4如图 有一直立标杆 它的上部被风从b处吹折 杆顶c着地 离杆脚2m 修好后又被风吹折 因新断处d比前一次低0 5m 故杆顶e着地比前次远1m 求原标杆的高度 由题意得ac 2m bd 0 5m ce 1m 设ab x m bc y m 则原标杆长 x y m 在rt abc中 bc2 ac2 ab2 即y2 x2 4 在rt ade中 ae ac ec 3m ad ab bd x 0 5 m de bd bc y 0 5 m ae2 ad2 de2 即 y 0 5 2 x 0 5 2 9 由 得y 0 25 x 0 25 9 4 即x y 5 原标杆的高度为5m 变形5印度数学家什迦逻 1141年 1225年 曾提出过 荷花问题 平平湖水清可鉴 面上半尺生红莲 出泥不染亭亭立 忽被强风吹一边 渔人观看忙向前 花离原位二尺远 能算诸君请解题 湖水如何知深浅 请用学过的数学知识

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论