福建省各市2012年中考数学分类解析专题5:数量和位置变化_第1页
福建省各市2012年中考数学分类解析专题5:数量和位置变化_第2页
福建省各市2012年中考数学分类解析专题5:数量和位置变化_第3页
福建省各市2012年中考数学分类解析专题5:数量和位置变化_第4页
福建省各市2012年中考数学分类解析专题5:数量和位置变化_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建9市2012年中考数学试题分类解析汇编专题5:数量和位置变化1、 选择题1. (2012福建龙岩4分)在平面直角坐标系中,已知点P(2,3),则点P在【 】A第一象限 B第二象限 C第三象限D第四象限【答案】D。【考点】平面直角坐标系中各象限点的特征。【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)。因此点P(2,3)位于第四象限。故选D。2. (2012福建宁德4分)一次函数y1x4的图象如图所示,则一次函数y2xb的图象与y1x4的图象的交点不可能在【 】A第一象限 B第二象限 C第三象限 D第四象限【答案】D。【考点】两条直线相交问题,直线上点的坐标与方程的关系。【分析】根据一次函数y1=x+4的图象经过的象限进行判定即可:由图可知,一次函数y1=x+4的图象经过第一、二、三象限,根据交点坐标一定在函数图象上,故两函数的图象的交点不可能在第四象限。故选D。3. (2012福建莆田4分)如图,在平面直角坐标系中,A(1,1),B(1,1),C(1,2),D(1,2)把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCDA一的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【 】 A(1,1) B(1,1) C(1,2) D(1,2)【答案】B。【考点】分类归纳(图形的变化类),点的坐标。【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案: A(1,1),B(1,1),C(1,2),D(1,2),AB=1(1)=2,BC=1(2)=3,CD=1(1)=2,DA=1(-2)=3。绕四边形ABCD一周的细线长度为2323=10,201210=2012,细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置。所求点的坐标为(1,1)。故选B。4. (2012福建厦门3分)已知两个变量x和y,它们之间的3组对应值如下表所示.x101y113则y 与x之间的函数关系式可能是【 】Ayx By2x1 Cyx2x1 Dy【答案】B。【考点】函数关系式,曲线上点的坐标与方程的关系。【分析】观察这几组数据,根据点在曲线上,点的坐标满足方程的关系,找出符合要求的关系式:A根据表格对应数据代入不能全得出y=x,故此选项错误;B根据表格对应数据代入均能得出y=2x+1,故此选项正确;C根据表格对应数据代入不能全得出yx2x1,故此选项错误;D根据表格对应数据代入不能全得出y ,故此选项错误。故选B。二、填空题1. (2012福建莆田4分)点A、均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示若P是x轴上使得的值最大的点,Q是y轴上使得QA十QB的值最小的点,则【答案】5。【考点】轴对称(最短路线问题),坐标与图形性质,三角形三边关系,待定系数法,直线上点的坐标与方程的关系。【分析】连接AB并延长交x轴于点P,作A点关于y轴的对称点A连接AB交y轴于点Q,求出点Q与y轴的交点坐标即可得出结论:连接AB并延长交x轴于点P,由三角形的三边关系可知,点P即为x轴上使得|PAPB|的值最大的点。点B是正方形ADPC的中点,P(3,0)即OP=3。作A点关于y轴的对称点A连接AB交y轴于点Q,则AB即为QA+QB的最小值。A(-1,2),B(2,1),设过AB的直线为:y=kx+b,则 ,解得 。Q(0, ),即OQ=。OPOQ=3=5。2. (2012福建南平3分)将直线y=2x向上平移1个单位长度后得到的直线是 【答案】y=2x1。【考点】一次函数图象与平移变换,待定系数法,直线上点的坐标理性认识各式的关系。【分析】直线y=2x经过点(0,0),向上平移1个单位后对应点的坐标为(0,1),平移前后直线解析式的k值不变,设平移后的直线为y=2xb。则20+b=1,解得b=1。所得到的直线是y=2x1。3. (2012福建宁德3分)五一节某超市稿促销活动:一次性购物不超过150元不享受优惠;一次性购物超过150元但不超过500元一律九折;一次性购物超过500元一律八折王宁两次购物分别付款120元、432元,若王宁一次性购买与上两次相同的商品,则应付款 元【答案】480元或528元。【考点】分段函数。【分析】计算出两次购买应该付款的数额,然后根据优惠方案即可求解:一次性购物超过150元,但不超过500元一律9折则在这个范围内最低付款135元,因而第一次付款120元,没有优惠;第二次购物时:若是第二种优惠,可得出原价是4320.9=480(符合超过150不高于500),则两次共付款:120+480=600元,超过500元,则一次性购买应付款:6000.8=480元。当第二次付款是超过500元时:可得出原价是 4320.8=540(符合超过500元),则两次共应付款:120+540=660元,则一次性购买应付款:6600.8=528元。一次性购买应付款:480元或528元。三、解答题1. (2012福建厦门10分)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连结AB. 如果点P在直线yx1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点”(1)判断点( , ) 是否是线段AB的“邻近点”,并说明理由;(2)若点Q (m,n)是线段AB的“邻近点”,求m的取值范围【答案】解:(1)点(,) 是线段AB的“邻近点”。理由如下:1,点(,)在直线yx1上.。点A的纵坐标与点B的纵坐标相同, ABx轴。(,) 到线段AB的距离是3。1,(,)是线段AB的“邻近点”。(2)点Q(m,n)是线段AB的“邻近点”,点Q(m,n)在直线yx1上。 nm1。 当m4时, nm13。又ABx轴,此时点Q(m,n)到线段AB的距离是n3。0n31。4m5。 当m4时, nm13。又ABx轴, 此时点Q(m,n)到线段AB的距离是3n。03n1。3m4。综上所述, 3m5。【考点】一次函数综合题,新定义,直线上点的坐标与方程的关系,点到直线的距离。【分析】(1)验证点(,)满足“邻近点”的条件即可。(2)分m4和m4讨论即可。2. (2012福建南平12分)在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(m,1)(m0),将此矩形绕O点逆时针旋转90,得到矩形OABC(1)写出点A、A、C的坐标;(2)设过点A、A、C的抛物线解析式为y=ax2+bx+c,求此抛物线的解析式;(a、b、c可用含m的式子表示)(3)试探究:当m的值改变时,点B关于点O的对称点D是否可能落在(2)中的抛物线上?若能,求出此时m的值 【考点】二次函数综合题,矩形的性质,旋转的性质,待定系数法,曲线上点的坐标与方程的关系,解方程组,关于原点对称的点的坐标特征,一元二次方程根与系数的关系。【分析】(1)先根据四边形ABCD是矩形,点B的坐标为(m,1)(m0),求出点A、C的坐标,再根据图形旋转的性质求出A、C的坐标即可。(2)设过点A、A、C的抛物线解析式为y=ax2+bx+c,把A、A、C三点的坐标代入即可得出abc的值,进而得出其抛物线的解析式。(3)根据关于原点对称的点的坐标特点用m表示出D点坐标,把D点坐标代入抛物线的解析式看是否符合即可。3. (2012福建宁德13分)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD10,OB8将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合(1)直接写出点A、B的坐标:A( , )、B( , );(2)若抛物线yx2bxc经过点A、B,则这条抛物线的解析式是 ;(3)若点M是直线AB上方抛物线上的一个动点,作MNx轴于点N问是否存在点M,使AMN与ACD相似?若存在,求出点M的坐标;若不存在,说明理由; (4)当x7,在抛物线上存在点P,使ABP的面积最大,求ABP面积的最大值【答案】解:(1)(6,0),(0,8)。 (2)。 (3)存在。设M,则N(m,0)MN=,NA=6m。 又DA=4,CD=8,若点M在点N上方,则AMNACD。,即,解得m=6或m=10。与点M是直线AB上方抛物线上的一个动点不符。此时不存在点M,使AMN与ACD相似。若点M在点N下方,则AMNACD。,即,解得m=2或m=6。与点M是直线AB上方抛物线上的一个动点不符。此时不存在点M,使AMN与ACD相似。若点M在点N上方,则AMNACD。,即,方程无解。此时不存在点M,使AMN与ACD相似。若点M在点N下方,则AMNACD。,即,解得m=或m=6。当m=时符合条件。此时存在点M(,),使AMN与ACD相似。综上所述,存在点M(,),使AMN与ACD相似。(4)设P(p,), 在中,令y=0,得x=4或x=6。 x7分为x4,4x6和6x7三个区间讨论: 如图,当x4时,过点P作PHx轴于点H则OH=p,HA=6p ,PH=。 当x4时,随p的增加而减小。当x=时,取得最大值,最大值为。如图,当4x6时,过点P作PHBC于点H,过点A作AGBC于点G。则BH= p,HG=6p,PH=, 当4x6时,随p的增加而减小。当x=4时,取得最大值,最大值为8。如图,当6x7时,过点P作PHx轴于点H。则OH=p,HA= p6,PH=。当6x7时,随p的增加而增加。当x=7时,取得最大值,最大值为7。综上所述,当x=时,取得最大值,最大值为。【考点】二次函数综合题,矩形的性质,旋转的性质,勾股定理, 曲线上点的坐标与方程的关系,相似三角形的判定,二次函数的性质。【分析】(1)由OD10,OB8,矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合,可得OA2=AB2OB2=10282=36,OA=6。A(6,0),B(0,8)。(2)抛物线yx2bxc经过点A、B, ,解得。 这条抛物线的解析式是。(3)分若点M在点N上方,若点M在点N下方,若点M在点N上方,若点M在点N下方,四种情况讨论即可。(4)根据二次函数的性质,分x4,4x6和6x7三个区间分别求出最大值,比较即可。4. (2012福建三明12分)已知直线与x轴和y轴分别交于点A和点B,抛物线的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N(1)如图,当点M与点A重合时,求:抛物线的解析式;(4分)点N的坐标和线段MN的长;(4分)(2)抛物线在直线AB上平移,是否存在点M,使得OMN与AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由(4分)【答案】解:(1)直线与x轴和y轴分别交于点A和点B,A(,0),B(0,5)。当顶点M与点A重合时,M(,0)。抛物线的解析式是:,即。N是直线与在抛物线的交点,解得或。N(,4)。如图,过N作NCx轴,垂足为C。N(,4),C(,0)NC=4MC=OMOC=。 。(2)存在。点M的坐标为(2,1)或(4,3)。【考点】二次函数综合题,二次函数的性质,曲线上点的坐标与方程的关系,勾股定理,相似三角形的判定和性质,等腰三角形的判定。【分析】(1)由直线与x轴和y轴分别交于点A和点B,求出点A、B的坐标,由顶点M与点A重合,根据二次函数的性质求出顶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论