




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
时间序列分析在股价建模及预测中的应用 摘要:我国的股票市场是一个高度复杂的非线性动力系统,现实生活中预测股市的未来变化具有十分重要的意义。近年来,基于时间序列分析的预测方法在各个领域中都得到了广泛的应用。而对股票价格进行预测较为普遍的模型就是时间序列模型,因此本文将时间序列建模方法应用于股票收盘价的建模和预测。文章采用中国石化157个交易日(自2013年6月19日至2014年2月11日间)内股价数据为研究对象,采用ARIMA模型进行建模和预测。 关键词:股票收盘价;ARIMA模型;预测 一、引言 随着我国证券市场的规范和发展,股票在整个国民经济的发展中发挥着日益重要的作用,它为国家和企业筹集了社会上的闲置资金,优化了资源配置,而且股票市场在某种程度上也是社会经济运行状况的“晴雨表”1。在股票市场中,收盘价不仅可以评判当前股票市场的行情,还可以为下一个交易日的开盘价提供依据。所以,对于股票收盘价将来变化趋势的预测是投资者和研究者进行股市分析时关注的主要问题2。 股市并不是完全由随机因素控制的,股价的走势本身还会受到一些规律性因素的影响。正是因为这一点,才使得人们对股票价格进行预测有了可能性。股市会受到经济周期、财政政策、政治因素、甚至投资者心理因素等多方面的因素的共同影响。目前主要的预测方法有:基于时间序列的股价预测;基于神经网络的股价预测;以及使用证券投资分析法对股价进行预测等。本文采用时间序列分析方法进行分析,主要有两方面的原因:一、时间序列有记忆性,股价的往期走势或多或少会对当前交易日的股价产生影响,时序分析能够对未来股票收盘价进行相对准确预测3;二、时间序列方法建模简便,准确度较高。投资者可以根据股价预测情况改变或调整投资策略,在一定程度上可以减轻股市风险对投资者个人和社会经济的影响,保证社会经济平稳有序的运行。 二、基于时间序列分析的股价建模 (一)建立模型 本文选取中石化157个交易日内股票收盘价数据作为研究对象,由于数据不存在异常值,故不需要对原始数据进行预处理。图1给出了中石化股票收盘价的时序图。从图中容易看出该序列随着时间推移呈现出一定的上升或下降的趋势,因此序列非平稳,需要对原始序列进行适当阶数的差分运算。 陈梦雨.TIFTS(JZHT7.H图1中国石化157个交易日股票收盘价时序图TS)KH*2 模型定阶首先对原始序列进行一阶差分运算,差分后序列基本在某一水平上下呈现无规则的随机波动;ACF图拖尾、PACF图延迟1,3,7阶截尾,尝试利用AR(1,7,13)模型进行拟合。 模型检验除了延迟7阶系数不显著非零,其他系数均通过检验,且残差白噪声检验显示所有检验统计量P值均大于0.5,数据中的信息提取充分。因此,可确定模型为ARIMA(1,13),1,0) 模型改进一阶差分序列的自相关图的短期相关性并不明显,考虑进一步对原始序列进行二阶差分,二阶差分后序列纯随机。由于二阶差分序列的ACF、PACF均显示一定的截尾性,尝试拟合ARIMA(0,2,1)和ARIMA(6,2,0)模型。且两个模型参数检验结果均显示显著非零,残差序列通过白噪声检验,序列信息提取充分。 (二)模型评价AIC/SBC准则 以上分析得到了拟合该股票收盘价序列的三个模型:ARIMA(1,13),1,0)、ARIMA(0,2,1)、ARIMA(6,2,0)模型。本文使用AIC准则和SBC准则评判以上三个模型的相对优劣程度。结果显示疏系数模型ARIMA(1,13),1,0)的AIC、SBC函数值均小于其他两个模型,认为疏系数模型ARIMA(1,13),1,0)为相对最优模型,所以与其他两个模型相比,该模型能够更好的拟合股票收盘价序列。 (三)模型预测 据以上分析建立的疏系数模型ARIMA(1,13),1,0)对中国石化接下来的5个交易日的股票收盘价做预测, 可见由模型得到的预测值与实际观测值之间存在一定的差异,但基本的动态趋势是一致的,而且实际观察值和预测值之间的总体差异并不大。 为了检验模型预测值的准确性,将所有实际观测值和预测值组成配对样本,以两者差值作为检验总体,对总体均值进行T检验,得到检验P值为0.8226,可以认为实际观测值与预测值之间无显著性差异,认为本文建立的ARIMA模型对于股票收盘价序列的预测比较准确。 值得指出的是,应用序列分析做预测时,前几期预测值的的标准误差较小,预测的精度较高;而随着预测期数的增加,预测的方差在增大,这表明短期内对序列进行预测结果比较精确,但长期预测效果不佳。然而相比于长期趋势,投资者更注重股价的短期变化情况,因此时间序列预测方法具有一定的实用性。 三、结论 股票收盘价格的时间序列是一个受政治、经济、心理等多方面因素共同影响的离散时间序列,因此想要准确拟合出股价走势往往是比较困难的。客观的说,本文所建的疏系数模型ARIMA(1,13),1,0)在对未来收盘价做预测时,短期预测结果比较准确,但是随着预测期数的增加,模型预测结果的相对误差逐渐增大。这说明一元时间序列分析方法虽然具有一些优点,但在长期预测中的精度不高。因此,今后为了能够提高预测的准确性和精度,可以对模型进行修改。例如:考虑到影响股票收盘价的因素较多,为了提高预测精度,可以建立多元时间序列模型,建立联立方程模型等。 根据本文的分析,可以知道时间序列ARIMA模型是股票收盘价短期预测较为理想的方法,首先可以用最近一段交易日内的收盘价数据建立时间序列模型,对未来三到五个交易日的股票收盘价进行预测。当得到新的收盘价数据时,又可以建立新的预测模型,这样就可以实现对股票收盘价序列持续不断的滚动预测。这种方法操作较为简便,股票交易者和研究者能够迅速对未来一段时期内股价走势进行预测,而且可以有效地指导投资者在股票市场中的投资行为,降低投资风险。(作者单位:安徽大学经济学院) 参考文献: 1吴小强,吕文龙.股票价格指数的趋势预测:基于上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三国鼎立课件
- 2025-2030中国微型车行业经营态势与竞争格局分析报告
- 2025-2030中国建筑构件纲模板件行业市场运营模式及未来发展动向预测报告
- 三分屏课件教学课件
- 三减三健科普知识课件
- 三减三健知识培训总结
- 考情透彻解读:凤阳地理面试攻略及新题目库发布
- 志愿者面试题库精 编
- 从题目看能力:西部航空面试心得体会
- 小儿运动康复课件
- 学堂在线 高职实综合英语 章节测试答案
- 2025年急诊急救三基考试试题(附参考答案)
- 2024年临汾市纪委监委所属事业单位选调真题
- 企业工程管理办法
- 通信工程安全生产操作规范
- 2025年广东省中考数学试卷真题(含答案详解)
- 2025年全国公务员考试试题及答案详解
- GB/T 45701-2025校园配餐服务企业管理指南
- 小学数学教学反思2000字
- vave价值管理制度
- 公司植保无人机管理制度
评论
0/150
提交评论