聚合物锂离子电池工作原理.doc_第1页
聚合物锂离子电池工作原理.doc_第2页
聚合物锂离子电池工作原理.doc_第3页
聚合物锂离子电池工作原理.doc_第4页
聚合物锂离子电池工作原理.doc_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

聚合物锂离子电池工作原理根据锂离子电池所用电解质材料不同,锂离子电池可以分为液态锂离子电池(lithium ion battery, 简称为LIB)和聚合物锂离子电池(polymer lithium ion battery, 简称为LIP)两大类。聚合物锂离子电池所用的正负极材料与液态锂离子都是相同的,电池的工作原理也基本一致。它们的主要区别在于电解质的不同, 锂离子电池使用的是液体电解质, 而聚合物锂离子电池则以固体聚合物电解质来代替, 这种聚合物可以是“干态”的,也可以是“胶态”的,目前大部分采用聚合物胶体电解质。聚合物锂离子电池可分为三类:(1) 固体聚合物电解质锂离子电池。电解质为聚合物与盐的混合物,这种电池在常温下的离子电导率低,适于高温使用。(2) 凝胶聚合物电解质锂离子电池。即在固体聚合物电解质中加入增塑剂等添加剂,从而提高离子电导率,使电池可在常温下使用。(3) 聚合物正极材料的锂离子电池。采用导电聚合物作为正极材料,其比能量是现有锂离子电池的3倍,是最新一代的锂离子电池。由于用固体电解质代替了液体电解质,与液态锂离子电池相比,聚合物锂离子电池具有可薄形化、任意面积化与任意形状化等优点,也不会产生漏液与燃烧*等安全上的问题,因此可以用铝塑复合薄膜制造电池外壳,从而可以提高整个电池的比容量;聚合物锂离子电池还可以采用高分子作正极材料,其质量比能量将会比目前的液态锂离子电池提高50以上。此外,聚合物锂离子电池在工作电压、充放电循环寿命等方面都比锂离子电池有所提高。基于以上优点,聚合物锂离子电池被誉为下一代锂离子电池。聚合物电池与液态锂电的比较 由于各个厂商生产工艺的不同,目前市场上的聚合物锂电分为卷绕式(索尼、东芝为代表)、叠片式(TCL、ATL为代表)两种不同结构,但适应于手机需求的 规格大都在4mm厚度以下。与液态比较,由于聚合物外包装采用了更薄的铝膜,比钢壳、铝壳更薄,而且生产方式与液态锂电不同,聚合物越薄越好生产,理论上可以生产出0.5mm以下厚度的电池。液态锂电正好相反,越厚越好生产,低于4mm厚度的电池很难生产,即使生产出来了,容量明显不如聚合物锂电,成本也没优势。因而,电池越薄,聚合物生产成本越低、液态生产成本越高。但较厚的规格上(如目前市场上手机用锂电池主流型号053048053448063048063450以及相近规格的电芯),液态锂电供应链成熟,工艺成熟,生产效率高,成品率高,有很强的制造成本优势。从目前市场来看,5mm、6mm厚度系列的液态锂电池虽然比3mm、4mm厚度系列电池容量高很 多,但售价要低很多。聚合物从理论上来讲,在5mm、6mm厚度规格上的材料成本与液态接近,但目前5mm、6mm系列电池的工艺成本要比液态高出很多,因而,要在此规格上与液态真正形成竞争,还有不少距离。目前最常用的锂离子电池的负极为石墨晶体,正极为氧化钴锂。下面以这种电池为例说明锂离子电池的基本工作原理: 石墨晶体和氧化钴锂都具有层状结构,这种层状结构化合物允许锂离子进出,而材料结构不会发生不可逆变化。 充电时,正极中的锂原子电离成锂离子和电子。得到外部输入能量的锂离子,在电解液中由正极向负极迁移,并且锂离子和电子在负极上复合成锂原子,重新形成的锂原子插入到负极石墨的层状结构中。 放电时,插入到石墨晶体中的锂原子从石墨内部向负极表面移动,并在负极表面电离成锂离子和电子,他们分别通过电解液和负载流向正极, 在正极重新复合成锂原子然后插入到正极的氧化钴锂的层状结构中。 从上面的过程可以看出,锂永远以离子的形态出现,不会以金属的形态出现,因此,这样的电池叫做锂离子电池。 锂离子电池的机理一般性分析认为,锂离子电池作为一种化学电源,指分别用两个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。锂离子电池是物理学、材料科学和化学等学科研究的结晶。锂离子电池所涉及的物理机理,目前是以固体物理中嵌入物理来解释的,嵌入(intercalation)是指可移动的客体粒子(分子、原子、离子)可逆地嵌入到具有合适尺寸的主体晶格中的网络空格点上。电子输运锂离子电池的正极和负极材料都是离子和电子的混合导体嵌入化合物。电子只能在正极和负极材料中运动。已知的嵌入化合物种类繁多,客体粒子可以是分子、原子或离子在嵌入离子的同时,要求由主体结构作电荷补偿,以维持电中性。电荷补偿可以由主体材料能带结构的改变来实现,电导率在嵌入前后会有变化。锂离子电池电极材料可稳定存在于空气中与其这一特性息息相关。嵌入化合物只有满足结构改变可逆并能以结构弥补电荷变化才能作为锂离子电池电极材料。锂离子电池的结构与工作原理锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO2、LiNiO2、LiMn2O4。 做为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.40.6,y=0.60.4,z=(2 3x5y)/2)等。电解质采用LiPF6的乙烯碳酸脂(EC)、丙烯碳酸脂(PC)和低粘度二乙基碳酸脂(DEC)等烷基碳酸脂搭配的混合溶剂体系。隔膜采用聚烯微多孔膜如PE、PP或它们复合膜,尤其是PP/PE/PP三层隔膜不仅熔点较低,而且具有较高的抗穿刺强度,起到了热保险作用。外壳采用钢或铝材料,盖体组件具有防爆断电的功能。电池常见问题 1.什么叫电池?电池Batteries是一种能量转化与储存的装置它通过反应将化学能或物理能转化为电能根据 电池即一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供能。2.什么是IEC标准?电池常用标准有哪些?IEC标准即国际电工委员会(International Electrical Commission),是由各国电工委员会组成的世界性标准化组织,其目的是为了促进世界电工电子领域的标准化。 电池常用IEC标准有锂电池的标准为IEC619602000.11。 电池常用国家标准有锂电池的标准为GB/T10077_1998YD/T998_1999,GB/T18287_2000。另外电池常用标准也有日本工业标准JIS C 关于电池的标准及SANYOPANASONIC公司制定的关于电池企业标准。3.锂电池的电化学原理是什么?锂电池正极主要成分为电解MnO2负极主要为金属锂片。正极反应:MnO2 e = MnOO负极反应:Li e = Li电池总反应:MnO2 Li = MnOOLi4.什么是一次性电池?一次性电池 俗称“用完即弃”电池,因为它们的电量耗尽后,无法再充电使用,只能丢弃。常见的一次性电池包括碱性电池、锌碳电池、锂电池、氧化银电池和锌空电池。电池种类 电压(V) 一般用途 一次性电池 碱性电池 1.5 手提CD/MD/MP3机、玩具、相机、遥控器 锌碳电池 1.5 时钟、收音机、烟雾警报器 锂锰钮型电池 3.0 计算机、电子手帐 相机锂电池 3.0 / 6.0 相机 氧化银电池 1.55 手表 锌空电池 1.4 助听器 充电池 镍氢电池 1.2 数码相机、手提CD/MD/MP3机、遥控玩具赛车 镍镉电池 1.2 手提CD/MD/MP3机、遥控玩具赛车 锂离子电池 3.6-3.7 手提电脑、个人数码助理、手提电话、手提摄录机、数码相机5.短路是甚么?会造成甚么后果?若电池的正负电极接连到任何导电物质,如钥匙炼及万字夹,便会出现短路的情况。短路的后果严重,例如会导致电池温度及内部气压上升,最终造成电池漏液。 为了避免短路,不要把已充电和没有包装的电池,跟硬币或钥匙串一起放在同一口袋内。6.什么会影响电池的使用寿命?电池的使用寿命会受到以下因素影响:(1) 放电: 放电的深度是影响电池寿命的主要因素,放电的深度越高,电池的寿命就越短。换句话说,只要降低放电深度,就能大幅延长电池的使用寿命。因此,我们应避免将电池过放至极低的电压。一般来说,若电池的最终电压为0.8至1.0伏特,就属于可以接受的范围,但须视根据放电电流大小而定。若电池在高温下放电,会缩短电池的使用寿命。如果电子器材的设计不会完全停止所有电流,那么若将该器材长时间搁置不用,而不把电池取出, 其残余电流有时会令电池过分消耗, 造成电池过放电。把不同电容量、化学结构的电池,以及新旧不一的电池混合使用,亦会令电池放电过多。(2) 储存:电池长时间以高温储存,会令其电极退化,缩短使用寿命。7.如何充分延长电池的使用寿命?若要充分延长电池的使用寿命,应该:把电池存放于清凉、干爽、通风良好的地方,避免阳光直射。若要长期储存,环境温度应低于摄氏30度。不要于极高或极低的温度下使用电池.8.温度较高或较低,会不会影响电池的表现?极高或极低的温度,会影响电池的表现,因此应避免将电子器材放在高温的环境。此外,电池毋须冷藏,只须于室温下存放在干爽的环境即可。9.如何善用一次性电池(1).放入电池前,应细阅电子器材的说明书。(2).根据生产商的要求,使用正确尺寸和类别的电池,然后留意电池及电子器材上的正负极指示,正确放入电池。(3).电池的电量耗尽后,应一次过取出所有电池,然后换入相同尺寸和类别的全新电池。(4).应于正常室温下存放电池,并将电池置于干爽的地方。(5).若电子器材长时间不会使用,宜把电池取出。(6).电池的两端和电池槽应保持清洁。更换电池时,可使用胶擦或干布擦拭。(7).避免让儿童接触电池。若不小心吞下电池,应立刻看医生。(8).不要把电池弃于火中,以免发生爆炸。(9).除非电池已列明可以充电,否则不要尝试为电池充电。(10).不要把新旧电池,以及不同类别的电池混合使用,以免电池破裂或漏液,导致身体受伤或财物损毁。(11).不要把没有包装的电池放于口袋中,或与钱币、万字夹和发针等金属物品放在一起,以免电池短路,产生高热。聚合物锂离子电池隔膜结构示意图 AOKE聚合物锂离子电池是新一代锂离子电池,不仅具有液态锂离子电芯的高电压、长循环寿命、放电电压平稳以及清洁无污染等特点,而且消除了液态锂离子电池存在的爆炸的安全隐患。同时外形更灵活、方便,重量更轻巧。产品性能均达到或超过液态锂离子电池的技术指标,更具安全性。AOKE聚合物锂电与液态电池对比:1 安全性能好:外包装为铝塑包装,有别于液态锂电的金属外壳,由于采用软包装技术,内部质量隐患可立即通过外包装变形而显示出来,一旦发生安全隐患,不会爆炸,只会鼓胀;2 超薄设计:适合各种超薄电器,而液态锂离子电池在厚度做到3.6mm以下时存在技术瓶颈。3 重量轻:聚合物锂电比同等规格的钢壳液锂轻40,比铝壳液锂轻20;4 容量大:聚合物比同等规格的钢壳液锂容量高10-15,比铝壳液锂容量高5-10;5 内阻小:目前我司的产品内阻能够作到35m以下,使电池容量能够更大发挥,相同的容量,在有的设计中,会因内阻大小不同,使用时间相差20-50%;6 形状可定制:可根据客户的要求灵活定制电池的厚度、形状,并可做出弧形等特殊形状;放电特性佳:聚合物锂电采用胶态电解质,具有更平稳的放电特性和更高的放电平台。锂离子电池知识简介第一节 锂离子电池基础知识一般而言,锂离子电池有三部分构成:1.锂离子电芯2.保护电路(PCM)3.外壳即胶壳电池的分类从锂离子电池与手机配合情况来看,一般分为外置电池和内置电池,这种叫法很容易理解,外置电池就是直接装在手上背面,如: MOTOROLA 191,SAMSUNG 系列等;而内置电池就是装入手机后,还另有一个外壳把其扣在手机电池内,如:MOTOROLA998,8088,NOKIA的大部分机型1.外置电池外置电池的封装形式有超声波焊接和卡扣两种:1.1超声波焊接外壳这种封装形式的电池外壳均有底面壳之分,材料一般为ABS+PC料,面壳一般喷油处理,代表型号有 :MOTOROLA 191,SAMSUNG 系列,原装电池的外壳经喷油处理后长期使用一般不会磨花,而一些品牌电池或水货电池用上几天外壳喷油就开始脱落了.其原因为:手机电池的外壳较便宜,而喷油处理的成本一般为外壳的几倍(好一点的),这样处理一般有三道工序:喷光油(打底),喷油(形成颜色),再喷亮油(顺序应该是这样的,如果我没记错的话),而一些厂商为了降低成本就省去了第一和第三道工序,这样成本就很低了.超声波焊塑机其作用为:行业内比较好的国产超声波焊塑机应该是深圳科威信机电公司生产的.焊接有了好的超声波焊塑机不够的,是否能够焊接OK,还与外壳的材料和焊塑机参数设置有很大关系,外壳方面主要与生产厂家的水口料掺杂情况有关,而参数设置则需自己摸索,由于涉及到公司一些技术资料,在这里不便多讲.1.2卡扣式卡扣式电池的原理为底面壳设计时形成卡扣式,其一般为一次性,如果卡好后用户强行折开的话,就无法复原,不过这对于生产厂家来讲不是很大的难度(卡好后再折开),其代表型号有:爱立信788,MOTOROLA V66.2. 内置电池内置电池的封形式也有两种,超声波焊接和包标(使用商标将电池全部包起)超声波焊接的电池主要有:NOKIA 8210,8250,8310,7210等.包标的电池就很多了,如前两年很浒的MOTO998 ,8088了.第二节 锂离子电芯的基本知识锂离子电芯是一种新型的电池能源,它不含金属锂,在充放电过程中,只有锂离子在正负极间往来运动,电极和电解质不参与反应。锂离子电芯的能量容量密度可以达到300Wh/L,重量容量密度可以达到125Wh/L。一、 电芯原理锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳定。其反应示意图及基本反应式如下所示:二、 电芯的构造电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压4 .2V,放电下限电压2.5V。三、 电芯的安全性电芯的安全性与电芯的设计、材料及生产工艺生产过程的控制等因素密切相关。在电芯的充放电过程中,正负极材料的电极电位均处于动态变化中,随着充电电压的增高,正极材料(LixCoO2)电位不断上升,嵌锂的负极材料(LixC6)电位首先下降,然后出现一个较长的电位平台,当充电电压过高( 4.2V)或由于负极活性材料面密度相对于正极材料面密度(C/A)比值不足时,负极材料过度嵌锂,负极电位则迅速下降,使金属锂析出(正常情况下则不会有金属锂的的析出),这样会对电芯的性能及安全性构成极大的威胁。电位变化见下图:在材料已定的情况下,C/A太大,则会出现上述结果。相反,C/A太小,容量低,平台低,循环特性差。这样,在生产加工中如何保证设计好的C/A比成了生产加工中的关键。所以在生产中应就以下几个方面进行控制:1.负极材料的处理1)将大粒径及超细粉与所要求的粒径进行彻底分离,避免了局部电化学反应过度激烈而产生负反应的情况,提高了电芯的安全性。2)提高材料表面孔隙率,这样可以提高10%以上的容量,同时在C/A 比不变的情况下,安全性大大提高。处理的结果使负极材料表面与电解液有了更好的相容性,促进了SEI膜的形成及稳定上。2.制浆工艺的控制1)制浆过程采用先进的工艺方法及特殊的化学试剂,使正负极浆料各组之间的表面张力降到了最低。提高了各组之间的相容性,阻止了材料在搅拌过程“团聚”的现象。2)涂布时基材料与喷头的间隙应控制在0.2mm以下,这样涂出的极板表面光滑无颗粒、凹陷、划痕等缺陷。3)浆料应储存6小时以上,浆料粘度保持稳定,浆料内部无自聚成团现象。均匀的浆料保证了正负极在基材上分布的均匀性,从而提高了电芯的一致性、安全性。3.采用先进的极片制造设备1)可以保证极片质量的稳定和一致性,大大提高电芯极片均一性,降低了不安全电芯的出现机率。2)涂布机单片极板上面密度误差值应小于2%,极板长度及间隙尺寸误差应小于2mm。3)辊压机的辊轴锥度和径向跳动应不大于4m,这样才能保证极板厚度的一致性。设备应配有完善的吸尘系统,避免因浮尘颗粒而导致的电芯内部微短路,从而保证了电芯的自放电性能。4)分切机应采用切刀为辊刀型的连续分切设备,这样切出的极片不存在荷叶边,毛刺等缺陷。同样设备应配有完善的吸尘系统,从而保证了电芯的自放电性能。4.先进的封口技术目前国内外方形锂离子电芯的封口均采用激光(LASER)熔接封口技术,它是利用YAG棒(钇铝石榴石)激光谐振腔中受强光源(一般为氮灯)的激励下发出一束单一频率的光(=1.06mm)经过谐振折射聚焦成一束,再把聚焦的焦点对准电芯的筒体和盖板之间,使其熔化后亲合为一体,以达到盖板与筒体的密封熔合的目的。为了达到密封焊,必须掌握以下几个要素:1)必须有能量大、频率高、聚焦性能好、跟踪精度高的激光焊机。2)必须有配合精度高的适用于激光焊的电芯外壳及盖板。3)必须有高统一纯度的氮气保护,特别是铝壳电芯要求氮气纯度高,否则铝壳表面就会产生难以熔化的Al2O3(其熔点为2400)。四、电芯膨胀原因及控制锂离子电芯在制造和使用过程中往往会有肿胀现象,经过分析与研究,发现主要有以下两方面原因:1锂离子嵌入带来的厚度变化电芯充电时锂离子从正极脱出嵌入负极,引起负极层间距增大,而出现膨胀,一般而言,电芯越厚,其膨胀量越大。2 工艺控制不力引起的膨胀在制造过程中,如浆料分散、C/A比离散性、温度控制都会直接影响电芯电芯的膨胀程度。特别是水,因为充电形成的高活性锂碳化合物对水非常 敏感,从而发生激烈的化学反应。反应产生的气体造成电芯内压升高,增加了电芯的膨胀行为。所以在生产中,除了应对极板严格除湿外,在注液过程中更应采用除湿设备,保证空气的干燥度为HR2%,露点(大气中的湿空气由于温度下降,使所含的水蒸气达到饱和状态而开始凝结时的温度)小于-40。在非常干燥的条件下,并采取真空注液,极大地降低了极板和电解液的吸水机率。五、铝壳电芯与钢壳电芯安全性比较铝壳相对于钢壳具有很高的安全优势,以下是不同的压力实验:注:压力是电芯压力为电芯内部之压力(单位:Kg),表内数据为电芯之厚度(单位:mm)由此可见钢壳对内压反映十分迟钝,而铝壳对内压反应却十分敏锐。因此从厚度上就基本能判断出电芯的内压,而钢壳电芯往往隐含着内压带来的不安全隐患。其中钢壳电芯型号为063448第三节 锂离子电池保护线路(PCM)由第二节锂离子电芯的知识我们可以看出,锂离子电池至少需要三重保护-过充电保护,过放电保护,短路保护,那么就应而产生了其保护线路,那么这个保护线路针对以上三个保护要求而言:过充电保护: 过充电保护 IC 的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。此时,保护 IC 需检测电池电压,当到达 4.25V 时(假设电池过充点为 4.25V)即启动过度充电保护,将功率 MOS 由开转为切断,进而截止充电。过放电保护: 过放电保护 IC 原理:为了防止锂电池的过放电,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假定为 2.5V)时将启动过放电保护,使功率 MOSFET 由开转变为切断而截止放电,以避免电池过放电现象产生,并将电池保持在低静态电流的待机模式,此时的电流仅 0.1uA。 当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免产生误动作。过放电保护及过充电保护IC主要生产厂家有:美上美(MITSUMI),精工,台湾富晶(DW01,FS301,302),理光,MOTOROLA等封装形式主要为SOT26,SOT6过电流及短路电流因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路,为确保安全,必须使其立即停止放电。 过电流保护 IC 原理为,当放电电流过大或短路情况产生时,保护 IC 将启动过(短路)电流保护,此时过电流的检测是将功率 MOSFET 的 Rds(on) 当成感应阻抗用以监测其电压的下降情形,如果比所定的过电流检测电压还高则停止放电,运算公式为:V- = I Rds(on) 2(V- 为过电流检测电压,I 为放电电流)。假设 V- = 0.2V,Rds(on) = 25m,则保护电流的大小为 I = 4A。同样地,过电流检测也必须设有延迟时间以防有突发电流流入时产生误动作。通常在过电流产生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作电池生产基础知识一、 原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极 2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 负极 3.0工作原理 3.1 充电过程如上图一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+Xli+Xe(电子) 负极上发生的反应为 6C+XLi+Xe=LixC6 3.2 电池放电过程放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。二、 工艺流程三、 电池不良项目及成因:1.容量低产生原因:a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂;d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好;g. 隔膜孔隙率小; h. 胶粘剂老化附料脱落; i.卷芯超厚(未烘干或电解液未渗透)j. 分容时未充满电; k. 正负极材料比容量小。2.内阻高产生原因:a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖帽虚焊;d. 负极耳与壳虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂;g. 电解液没有锂盐; h. 电池曾经发生短路; i. 隔膜纸孔隙率小。3.电压低产生原因:a. 副反应(电解液分解;正极有杂质;有水); b. 未化成好(SEI膜未形成安全);c. 客户的线路板漏电(指客户加工后送回的电芯); d. 客户未按要求点焊(客户加工后的电芯);e. 毛刺; f. 微短路; g. 负极产生枝晶。4.超厚产生超厚的原因有以下几点:a. 焊缝漏气; b. 电解液分解; c. 未烘干水分;d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚;g. 卷芯太厚(附料太多;极片未压实;隔膜太厚)。5.成因有以下几点a. 未化成好(SEI膜不完整、致密); b. 烘烤温度过高粘合剂老化脱料; c. 负极比容量低;d. 正极附料多而负极附料少; e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低。6.爆炸a. 分容柜有故障(造成过充); b. 隔膜闭合效应差; c. 内部短路7.短路a. 料尘; b. 装壳时装破; c. 尺刮(小隔膜纸太小或未垫好);d. 卷绕不齐; e. 没包好; f. 隔膜有洞; g. 毛刺8.断路a) 极耳与铆钉未焊好,或者有效焊点面积小;b) 连接片断裂(连接片太短或与极片点焊时焊得太*下)配料基础知识配 料 基 础 知 识一、 电极的组成:1、 正极组成:a、 钴酸锂:正极活性物质,锂离子源,为电池提高锂源。b、 导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。提高正极片的电解液的吸液量,增加反应界面,减少极化。c、 PVDF粘合剂:将钴酸锂、导电剂和铝箔或铝网粘合在一起。d、 正极引线:由铝箔或铝带制成。2、 负极组成:a、 石墨:负极活性物质,构成负极反应的主要物质;主要分为天然石墨和人造石墨两大类。b、 导电剂:提高负极片的导电性,补偿负极活性物质的电子导电性。提高反应深度及利用率。防止枝晶的产生。利用导电材料的吸液能力,提高反应界面,减少极化。(可根据石墨粒度分布选择加或不加)。c、 添加剂:降低不可逆反应,提高粘附力,提高浆料黏度,防止浆料沉淀。d、 水性粘合剂:将石墨、导电剂、添加剂和铜箔或铜网粘合在一起。e、 负极引线:由铜箔或镍带制成。二、 配料目的:配料过程实际上是将浆料中的各种组成按标准比例混合在一起,调制成浆料,以利于均匀涂布,保证极片的一致性。配料大致包括五个过程,即:原料的预处理、掺和、浸湿、分散和絮凝。三、 配料原理:(一) 、正极配料原理1、 原料的理化性能。(1) 钴酸锂:非极性物质,不规则形状,粒径D50一般为6-8 m,含水量0.2%,通常为碱性,PH值为10-11左右。锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 m,含水量0.2%,通常为弱碱性,PH值为8左右。(2) 导电剂:非极性物质,葡萄链状物,含水量3-6%,吸油值300,粒径一般为 2-5 m;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。(3) PVDF粘合剂:非极性物质,链状物,分子量从300,000到3,000,000不等;吸水后分子量下降,粘性变差。(4) NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。2、 原料的预处理(1) 钴酸锂:脱水。一般用120 oC常压烘烤2小时左右。(2) 导电剂:脱水。一般用200 oC常压烘烤2小时左右。(3) 粘合剂:脱水。一般用120-140 oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。(4) NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。3、 原料的掺和:(1) 粘合剂的溶解(按标准浓度)及热处理。(2) 钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。4、 干粉的分散、浸湿:(1) 原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。当润湿角90度,固体浸湿。当润湿角90度,固体不浸湿。正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。(2) 分散方法对分散的影响:A、 静置法(时间长,效果差,但不损伤材料的原有结构);B、 搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别材料的自身结构)。1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度越大;浓度越低,粘接强度越小。5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。6、温度对分散速度的影响。适宜的温度下,浆料流动性好、易分散。太热浆料容易结皮,太冷浆料的流动性将大打折扣。5、 稀释。将浆料调整为合适的浓度,便于涂布。(二)、负极配料原理(大致与正极配料原理相同)1、 原料的理化性能。(1) 石墨:非极性物质,易被非极性物质污染,易在非极性物质中分散;不易吸水,也不易在水中分散。被污染的石墨,在水中分散后,容易重新团聚。一般粒径D50为20m左右。颗粒形状多样且多不规则,主要有球形、片状、纤维状等。(2) 水性粘合剂(SBR):小分子线性链状乳液,极易溶于水和极性溶剂。(3) 防沉淀剂(CMC):高分子化合物,易溶于水和极性溶剂。(4) 异丙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂网状交链,提高粘结强度。乙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂线性交链,提高粘结强度(异丙醇和乙醇的作用从本质上讲是一样的,大批量生产时可考虑成本因素然后选择添加哪种)。(5)去离子水(或蒸馏水):稀释剂,酌量添加,改变浆料的流动性。2、 原料的预处理:(1) 石墨:A、混合,使原料均匀化,提高一致性。B、300400常压烘烤,除去表面油性物质,提高与水性粘合剂的相容能力,修圆石墨表面棱角(有些材料为保持表面特性,不允许烘烤,否则效能降低)。(2) 水性粘合剂:适当稀释,提高分散能力。3、 掺和、浸湿和分散:(1) 石墨与粘合剂溶液极性不同,不易分散。(2) 可先用醇水溶液将石墨初步润湿,再与粘合剂溶液混合。(3) 应适当降低搅拌浓度,提高分散性。(4) 分散过程为减少极性物与非极性物距离,提高势能或表面能,所以为吸热反应,搅拌时总体温度有所下降。如条件允许应该适当升高搅拌温度,使吸热变得容易,同时提高流动性,降低分散难度。(5) 搅拌过程如加入真空脱气过程,排除气体,促进固-液吸附,效果更佳。(6) 分散原理、分散方法同正极配料中的相关内容,在三、(一)、4中有详细论述,在此不予详细解释。4、 稀释。将浆料调整为合适的浓度,便于涂布。四、 配料注意事项:1、 防止混入其它杂质;2、 防止浆料飞溅;3、 浆料的浓度(固含量)应从高往低逐渐调整,以免增加麻烦;4、 在搅拌的间歇过程中要注意刮边和刮底,确保分散均匀;5、 浆料不宜长时间搁置,以免沉淀或均匀性降低;6、 需烘烤的物料必须密封冷却之后方可以加入,以免组分材料性质变化;7、 搅拌时间的长短以设备性能、材料加入量为主;搅拌桨的使用以浆料分散难度进行更换,无法更换的可将转速由慢到快进行调整,以免损伤设备;8、 出料前对浆料进行过筛,除去大颗粒以防涂布时造成断带;9、 对配料人员要加强培训,确保其掌握专业知识,以免酿成大祸;10、 配料的关键在于分散均匀,掌握该中心,其它方式可自行调整。五、 总论:随着电池制程的日益透明,锂离子电池生产厂家越来越将配料列为核心机密,因为从材料的挑选、处理到合理搭配包含了太多技术人员的心血,同样的材料,有的厂家用起来特别顺利,有的厂家就麻烦百出;有的厂家用中档的材料可以做出高端的电池,而有的厂家却使用最好的材料做成的电池惨不忍睹;本人在此发表配料的基础知识,旨在让大家对配料的了解多一些,少走一些弯路;但因本人水平有限,难免有疏漏之处,希望大家多多批评指正。我也期望大家在工作中认真研究,真诚交流,大胆创新,团结起来,共同促进中国锂离子电池生产水平的提高使用聚合物锂离子电池的注意事项 一、电芯操作注意事项 由于电芯属于软包装,为保证电芯的性能不受损害,必须小心对电芯进行操作。1.铝箔包装材料铝箔包装材料易被尖锐部件刺损,诸如镍片、尖针。禁止用尖锐部件碰撞电池应清洁工作环境,避免有尖锐部件存在禁止用钉子及其它利器刺穿电池禁止将电池与金属物,如项链、发夹等一起运输或贮存2.顶封边顶封边非常容易受到损害禁止弯折顶封边3.折边折边在电池生产过程中已完成,并通过了密封测试。禁止打开或破坏折边 4.极耳极耳的机械强度并非异常坚固,特别是铝片。禁止弯折极耳5.机械撞击禁止坠落、冲击、弯折电芯禁止用锤子敲击或踩踏电池禁止敲击或抛掷电池。6.短路任何时候禁止短路电芯,它会导致电芯严重损坏禁止用金属物如电线短路连接电池正负极二、聚合物锂离子电池测试标准环境环境温度: 205相对湿度: 4585%在测试前电池都要先放完电三、聚合物锂离子电范充放电注意事项1.充电充电电流及充电电压不得超过以下标准,如超过规定值可能会对电芯的充放电性能、机械性能及安全性造成造成损坏,进可能导致发热及泄漏。 电池充电器必须能恒流恒压充电;充电时的单体电池充电电流必须在1C5A以下;充电时温度范围在0+45;充电时电压不能超过4.23V。2.放电放电电流不得超过以下标准,放电必须在本标准范围内进行。单体电池放电电流必须小于2C5A;放电时温度范围在-20+60;单体电池放电终止电压不小于2.75V。3.过放电需要注意的是,在电芯长期未使用期间,它可能会用其自放电特性而处于某种过放电状态。为防止过放电的发生,电芯应定期充电,将其电压维持在3.0V以上。过放电会导致电芯性能、电池功能的丧失。不能过放电使单体电池低于2.5V。4.具体应用时要求加合格保护电路板。四、聚合物锂离子电池贮存电池长期贮存的环境为:温度-20+35相对湿度 4575% 电池贮存期近一年时要用标准充电方式给电池充电10%50%。五、聚合物锂离子电池运输电池应在10%50%的充电状态下运输。六、聚合物锂离子电池其它使用说明1.为了防止电池可能发生泄漏、发热、爆炸,请注意以下预防措施:禁止在任何情况下拆卸电芯。 禁止将电池浸入水中或海水中,不能受潮。 禁止在热源旁,如火、加热器等,使用或放置电池。 禁止将电池加热或丢入火中。 禁止直接焊接电池。 禁止在火边或很热的环境中充电。 禁止将电池放入微波炉或高压容器内。 禁止在高温下(如强阳光或很热的汽车中)使用或放置电池,否则会引起过热、起火或者功能衰退、寿命减小。 2.聚合物锂离子电池理论上不存在流动的电解液,但万一有电解液泄漏而接触到皮肤、眼睛或身体其它部位,应立即用清水冲冼电解液并就医。3.禁止使用已损坏的电芯(电芯塑料封边损坏,外壳破损,闻到电解液气体,电解液泄漏等)。如有电解液泄漏或散发电解液气味的电池应远离火源以避免着火或爆炸。锂电池保护电路综述_锂离子电池保护电路包括过度充电保护、过电流短路保护和过放电保护,要求过充电保护高精密度、保护IC功耗低、高耐压以及零伏可充电等特性。本文详细介绍了这三种保护电路的原理、新功能和特性要求。_ 近年来,PDA、数字相机、手机、可携式音讯设备和蓝芽设备等越来越多的产品采用锂电池作为主要电源。锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,与镍镉、镍氢电池不太一样,锂电池必须考虑充电、放电时的安全性,以防止特性劣化。针对锂电池的过充、过度放电、过电流及短路保护很重要,所以通常都会在电池包内设计保护线路用以保护锂电池。 由于锂离子电池能量密度高,因此难以确保电池的安全性。在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而产生自燃或破裂的危险;反之,在过度放电状态下,电解液因分解导致电池特性及耐久性劣化,因而降低可充电次数。 锂离子电池的保护电路就是要确保这样的过度充电及放电状态时的安全性,并防止特性劣化。锂离子电池的保护电路是由保护IC及两颗功率MOSFET所构成,其中保护IC监视电池电压,当有过度充电及放电状态时切换到以外挂的功率MOSFET来保护电池,保护IC的功能有过度充电保护、过度放电保护和过电流短路保护。 一、过度充电保护 过度充电保护IC的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。此时,保护IC需检测电池电压,当到达4.25V时(假设电池过充点为4.25V)即激活过度充电保护,将功率MOSFET由开转为切断,进而截止充电。 另外,还必须注意因噪音所产生的过度充电检出误动作,以免判定为过充保护。因此,需要设定延迟时间,并且延迟时间不能短于噪音的持续时间。 二、过度放电保护 在过度放电的情况下,电解液因分解而导致电池特性劣化,并造成充电次数的降低。采用锂电池保护IC可以避免过度放电现象产生,实现电池保护功能。 过度放电保护IC原理:为了防止锂电池的过度放电状态,假设锂电池接上负载,当锂电池电压低于其过度放电电压检测点(假定为2.3V)时将激活过度放电保护,使功率MOSFET由开转变为切断而截止放电,以避免电池过度放电现象产生,并将电池保持在低静态电流的待机模式,此时的电流仅0.1A。 当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免产生误动作。 三、过电流及短路电流 因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路,为确保安全,必须使其立即停止放电。过电流保护IC原理为,当放电电流过大或短路情况产生时,保护IC将激活过(短路)电流保护,此时过电流的检测是将功率MOSFET的Rds(on) 当成感应阻抗用以监测其电压的下降情形,如果比所定的过电流检测电压还高则停止放电,运算公式为:V- = I Rds(on) 2(V- 为过电流检测电压,I 为放电电流)假设 V- = 0.2V,Rds(on) = 25m,则保护电流的大小为 I = 4A 同样地,过电流检测也必须设有延迟时间以防有突发电流流入时产生误动作。 通常在过电流产生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作。 四、锂电池保护IC的新功能 除了上述的锂电池保护IC功能之外,下面这些新的功能同样值得关注: 1.充电时的过电流保护 当连接充电器进行充电时突然产生过电流(如充电器损坏),电路立即进行过电流检测,此时Cout将由高转为低,功率MOSFET由开转为切断,实现保护功能。V- = I Rds(on) 2(I 是充电电流;Vdet4,过电流检测电压,Vdet4 为 -0.1V) 2.过度充电时的锁定模式 通常保护IC在过度充电保护时将经过一段延迟时间,然后就会将功率MOSFET切断以达到保护的目的,当锂电池电压一直下降到解除点(过度充电滞后电压)时就会恢复,此时又会继续充电保护放电充电放电。这种状态的安全性问题将无法获得有效解决,锂电池将一直重复着充电放电充电放电的动作,功率MOSFET的栅极将反复地处于高低电压交替状态,这样可能会使MOSFET变热,还会降低电池寿命,因此锁定模式很重要。假如锂电保护电路在检测到过度充电保护时有锁定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论