空间机构的自由度计算_第1页
空间机构的自由度计算_第2页
空间机构的自由度计算_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.5.2 空间机构的自由度计算 同平面机构自由度计算公式推导过程一样,空间机构的自由度 = 所有活动构件自由度 - 所有运动副引入的约束数,其公式为:F=6n-5P5-4P4-3P3-2P2-P1式中:n为活动构件数; P1、P2、P3、P4、P5分别为1 5级运动副的个数。例 题 一(a) (b) 图2.5.2-1 图(a)所示为自动驾驶仪操纵装置内的空间四杆机构。活塞2相对气缸运动后通过连杆3使摇杆4作定轴转动。构件1、2组成圆柱副,构件2、3和构件4、1分别组成转动副,构件3、4组成球面副,其运动示意图如图(b)所示。试计算该机构的自由度。解: n=3, P5=2, P4=1, P3=1 F=6n-5P5-4P4-3P3-2P2-P =63-52-41-31=1. 例 题 二 图(a)所示为某飞机起落架的收放机构。构件1为原动件,构件1、2和2、3分别组成3级球副,构件1、4和3、4分别组成5级移动副和转动副,其运动示意图如图(b)所示。试计算该机构的自由度并判断其运动是否确定。解: n=3, P5=2, P3=2 F=6n-5P5-4P4-3P3-2P2-P =63-52-32=1.计算结果表明需要2个原动件机构的运动才能得以确定。而实际上该机构在1个原动件的带动下运动就能确定了。上述问题出现在何处?(a) (b) 图2.5.2-2 构件2的两端同构件1、3分别组成球副,这样使得构件2可以绕自身轴线转动,而这个转动(自由度)对整个机构的运动没有影响,对比平面凸轮机构中滚子的转动一样,称为局部自由度。图2.5.2-3 对于局部自由度也有两种处理方法:. 修正自由度计算公式:F=6n-5P5-4P4-3P3-2P2-P1-k 式中:k为局部自由度数。这样例题2的机构的自由度应为: F=6n-5P5-4P4-3P3-2P2-P1-k=63-52-32-1=1 具有确定的运动。. 机构设计时改变运动副类型 在例题2中,可以将构件2一端的球副设计变成球销副,如图2.5.2-3所示,这样就消除了构件2绕自身轴线转动的局部自由度。这时机构的自由度应为: F=6n-5P5-4P4-3P3-2P2-P1=63-52-41-31=1 具有确定的运动。由此可以看出,空

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论