2007合肥大学数值分析期末考试参考答案-(2007-06-29).doc_第1页
2007合肥大学数值分析期末考试参考答案-(2007-06-29).doc_第2页
2007合肥大学数值分析期末考试参考答案-(2007-06-29).doc_第3页
2007合肥大学数值分析期末考试参考答案-(2007-06-29).doc_第4页
2007合肥大学数值分析期末考试参考答案-(2007-06-29).doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Numerical AnalysisAnswers to Test A (June 29, 2007)1Fill in the following blanks(1) Suppose , then the 2008th divided difference (差商(均差) 0 .(2) Let,then the number approximate with 4 significant digits. , , . (3) Suppose .Then 12 , 9 .(4) The Trapezoidal rule (梯形求积公式) applied to gives the value 4, and Simpsons rule gives the value 2. Then 1/2 .(5) A quadratic spline S for a function on is defined by, Then 2 , 1 .2. a) Show that the sequence is generated by Newtons method for finding the root of equation . b) The sequence converges to of order 2 whenever . c) Use to compute with 6 significant digits.Proof: a) Define then the sequence generated by Newtons method for finding the root of equation isthat is. b) Since , it is easy to get that , and by induction it follows ,and.Therefore the sequenceconverges to some constant Hence the sequenceconverges to of order 2 which follows fromc) With , from the iterative scheme, it follows 3. Use the following data to construct an interpolating polynomial of degree four so that for and 01201101Solution: Build up the divided-difference table as follows :0000011111110-1210-1-1/21/4 So the polynomial interpolating the given data is 4. Find the constants and, so that the quadrature formula(求积公式) has the highest possible degree of precision (代数精度). Solution: For ,we have by the definition of degree of precision Solving the equation systems for ,we get 5. The forward-difference formula can be expressed asUse Richardsons extrapolation (Richardson 外推) to derive an formula for Solution: Define . By Richadsons extrapolation, substituting by into the forward diffence formula gives (2)From , one gets (3)Similarly, changing by into (3), we have (4)From , we have6. Use Eulers method and the Modified Euler method to approximate the solution for the initial-value problem with Solution Define ,then . By the Modified Euler method, we get the iterative scheme or Therefore7. Establish the convergent (收敛的) Jacobi iterative scheme (迭代格式) and Gauss-Seidel iterative scheme for the following linear system and explain why these schemes are convergent? Solution Rearrange the linear system as follows The corresponding coefficient matrix is a strictly diagonal dominant matrix, so the Jacobi iterative scheme and Gauss-S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论