




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题: 直线的点斜式方程 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例;培养学生思维的严谨性和相互合作意识,注意学生语言表述能力的训练.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.培养学生形成严谨的科学态度和求简的数学精神.3.掌握直线方程的点斜式的特征及适用范围,培养和提高学生联系、对应、转化等辩证思维能力.批 注教学重点:引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.教学难点:在理解的基础上掌握直线方程的点斜式的特征及适用范围.教学用具:投影仪教学方法:通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。教学过程:导入新课思路1.方程y=kxb与直线l之间存在着什么样的关系?让学生边回答,教师边适当板书.它们之间存在着一一对应关系,即(1)直线l上任意一点P(x1,y1)的坐标是方程y=kxb的解.(2)(x1,y1)是方程y=kx+b的解点P(x1,y1)在直线l上.这样好像直线能用方程表示,这节课我们就来学习、研究这个问题直线的方程(宣布课题).思路2.在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾: 一次函数y=kx+b的图象是一条直线,它是以满足y=kx+b的每一对x、y的值为坐标的点构成的.由于函数式y=kx+b也可以看作二元一次方程,所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.这节课我们就来学习直线的方程(宣布课题).推进新课新知探究提出问题如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程?已知直线l的斜率k且l经过点P1(x1,y1),如何求直线l的方程?方程导出的条件是什么?若直线的斜率k不存在,则直线方程怎样表示?k=与y-y1=k(x-x1)表示同一直线吗?已知直线l的斜率k且l经过点(,),如何求直线l的方程?讨论结果:确定一条直线需要两个条件:a.确定一条直线只需知道k、b即可;b.确定一条直线只需知道直线l上两个不同的已知点.设P(x,y)为l上任意一点,由经过两点的直线的斜率公式,得k=,化简,得yy1=k(xx1).方程导出的条件是直线l的斜率k存在.a.x=0;b.x=x1.启发学生回答:方程k=表示的直线l缺少一个点P1(x1,y1),而方程yy1=k(xx1)表示的直线l才是整条直线.y=kx+b.应用示例例1 一条直线经过点P1(-2,3),倾斜角=45,求这条直线方程,并画出图形.图1解:这条直线经过点P1(-2,3),斜率是k=tan45=1.代入点斜式方程,得y-3=x+2,即x-y+5=0,这就是所求的直线方程,图形如图1所示.点评:此例是点斜式方程的直接运用,要求学生熟练掌握,并具备一定的作图能力.变式训练 求直线y=-(x-2)绕点(2,0)按顺时针方向旋转30所得的直线方程.解:设直线y=-(x-2)的倾斜角为,则tan=-,又0,180),=120. 所求的直线的倾斜角为120-30=90.直线方程为x=2.例2 如果设两条直线l1和l2的方程分别是l1:y=k1x+b1,l2:y=k2x+b2,试讨论:(1)当l1l2时,两条直线在y轴上的截距明显不同,但哪些量是相等的?为什么?(2)l1l2的条件是什么?活动:学生思考:如果1=2,则tan1=tan2一定成立吗?何时不成立?由此可知:如果l1l2,当其中一条直线的斜率不存在时,则另一条直线的斜率必定不存在.反之,问:如果b1b2且k1=k2,则l1与l2的位置关系是怎样的?由学生回答,重点说明1=2得出tan1=tan2的依据.解:(1)当直线l1与l2有斜截式方程l1:y=k1x+b1,l2:y=k2x+b2时,直线l1l2k1=k2且b1b2.(2)l1l2k1k2=-1.变式训练 判断下列直线的位置关系:(1)l1:y=x+3,l2:y=x-2;(2)l1:y=x,l2:y=-x.答案:(1)平行;(2)垂直.拓展提升已知直线y=kxk2与以A(0,3)、B(3,0)为端点的线段相交,求实数k的取值范围.图4活动:此题要首先画出图形4,帮助我们找寻思路,仔细研究直线y=kxk2,我们发现它可以变为y2=k(x1),这就可以看出,这是过(1,2)点的一组直线.设这个定点为P(1,2).解:我们设PA的倾斜角为1,PC的倾斜角为,PB的倾斜角为2,且12.则k1=tan1kk2=tan2.又k1=-5,k2=-,则实数k的取值范围是-5k-.课堂小结通过本节学习,要求大家:1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.作业教学后记: 直线方程的点斜式给出了根据已知一个点和斜率求直线的方程的方法和途径.在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的.从初中代数中的一次函数y=kxb(k0)引入,自然地过渡到本节课想要解决的问题求直线的方程问题.在引入过程中,要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程及方程的特征入手. 课题: 直线的两点式方程 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:1.让学生掌握直线方程两点式和截距式的发现和推导过程,并能运用这两种形式求出直线的方程.培养学生数形结合的数学思想,为今后的学习打下良好的基础.2.了解直线方程截距式的形式特点及适用范围,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.批 注教学重点:直线方程两点式和截距式教学难点:关于两点式的推导以及斜率k不存在或斜率k=0时对两点式方程的讨论及变形.教学用具:投影仪教学方法:让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。教学过程:导入新课思路1.上节课我们学习了直线方程的点斜式,请问点斜式方程是什么?点斜式方程是怎样推导的?利用点斜式解答如下问题:(1)已知直线l经过两点P1(1,2),P2(3,5),求直线l的方程.(2)已知两点P1(x1,y1),P2(x2,y2)(其中x1x2,y1y2),求通过这两点的直线方程.思路2.要学生求直线的方程,题目如下:A(8,-1),B(-2,4);A(6,-4),B(-1,2);A(x1,y1),B(x2,y2)(x1x2).(分别找3个同学说上述题的求解过程和答案,并着重要求说求k及求解过程)这个答案对我们有何启示?求解过程可不可以简化?我们可不可以把这种直线方程取一个什么名字呢?推进新课新知探究提出问题已知两点P1(x1,y1),P2(x2,y2)(其中x1x2,y1y2),求通过这两点的直线方程.若点P1(x1,y1),P2(x2,y2)中有x1=x2或y1=y2,此时这两点的直线方程是什么?两点式公式运用时应注意什么?已知直线l与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中a0,b0,求直线l的方程.a、b表示截距是不是直线与坐标轴的两个交点到原点的距离?截距式不能表示平面坐标系下哪些直线?活动:教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程.师生共同归纳:已知直线上两个不同点,求直线的方程步骤:a.利用直线的斜率公式求出斜率k;b.利用点斜式写出直线的方程.x1x2,k=,直线的方程为y-y1=(x-x1).l的方程为y-y1=(x-x1).当y1y2时,方程可以写成.由于这个方程是由直线上两点确定的,因此叫做直线方程的两点式.注意:式是由式导出的,它们表示的直线范围不同.式中只需x1x2,它不能表示倾斜角为90的直线的方程;式中x1x2且y1y2,它不能表示倾斜角为0或90的直线的方程,但式相对于式更对称、形式更美观、更整齐,便于记忆.如果把两点式变成(y-y1)(x2-x1)=(x-x1)(y2-y1),那么就可以用它来求过平面上任意两已知点的直线方程.使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式.教师引导学生通过画图、观察和分析,发现当x1=x2时,直线与x轴垂直,所以直线方程为x=x1;当y1=y2时,直线与y轴垂直,直线方程为y=y1.引导学生注意分式的分母需满足的条件.使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形.教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线l的方程?哪种方法更为简捷?然后求出直线方程.因为直线l经过(a,0)和(0,b)两点,将这两点的坐标代入两点式,得.就是=1.注意:这个方程形式对称、美观,其中a是直线与x轴交点的横坐标,称a为直线在x轴上的截距,简称横截距;b是直线与y轴交点的纵坐标,称b为直线在y轴上的截距,简称纵截距.因为方程是由直线在x轴和y轴上的截距确定的,所以方程式叫做直线方程的截距式.注意到截距的定义,易知a、b表示的截距分别是直线与坐标轴x轴交点的横坐标,与y轴交点的纵坐标,而不是距离.考虑到分母的原因,截距式不能表示平面坐标系下在x轴上或y轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.讨论结果:若x1x2且y1y2,则直线l方程为.当x1=x2时,直线与x轴垂直,直线方程为x=x1;当y1=y2时,直线与y轴垂直,直线方程为y=y1.倾斜角是0或90的直线不能用两点式公式表示(因为x1x2,y1y2).=1.a、b表示的截距分别是直线与坐标轴x轴交点的横坐标,与y轴交点的纵坐标,而不是距离.截距式不能表示平面坐标系下在x轴上或y轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.应用示例例1 求出下列直线的截距式方程:(1)横截距是3,纵截距是5;(2)横截距是10,纵截距是-7;(3)横截距是-4,纵截距是-8.答案:(1)5x+3y-15=0;(2)7x-10y-70=0;(3)3x+4y+12=0.变式训练 已知RtABC的两直角边AC=3,BC=4,直角顶点C在原点,直角边AC在x轴负方向上,BC在y轴正方向上,求斜边AB所在的直线方程.答案:4x-3y+12=0.例2 如图1,已知三角形的顶点是A(5,0)、B(3,3)、C(0,2),求这个三角形三边所在直线的方程.图1活动:根据A、B、C三点坐标的特征,求AB所在的直线的方程应选用两点式;求BC所在的直线的方程应选用斜截式;求AC所在的直线的方程应选用截距式.解:AB所在直线的方程,由两点式,得,即3x+8y+15=0.BC所在直线的方程,由斜截式,得y=-x+2,即5x+3y-6=0.AC所在直线的方程,由截距式,得=1,即2x-5y+10=0.变式训练 如图2,已知正方形的边长是4,它的中心在原点,对角线在坐标轴上,求正方形各边及对称轴所在直线的方程.图2活动:由于正方形的顶点在坐标轴上,所以可用截距式求正方形各边所在直线的方程.而正方形的对称轴PQ,MN,x轴,y轴则不能用截距式,其中PQ,MN应选用斜截式;x轴,y轴的方程可以直接写出.解:因为|AB|=4,所以|OA|=|OB|=.因此A、B、C、D的坐标分别为(2,0)、(0,2)、(-2,0)、(0,-2).所以AB所在直线的方程是=1,即x+y-2=0.BC所在直线的方程是=1,即x-y+2=0.CD所在直线的方程是=1,即x+y+2=0.DA所在直线的方程是=1,即x-y-2=0.对称轴方程分别为xy=0,x=0,y=0.拓展提升问题:把函数y=f(x)在x=a及x=b之间的一段图象近似地看作直线,设acb,证明f(c)的近似值是f(a)+f(b)-f(a).证明:A、B、C三点共线,kAC=kAB,即.f(c)-f(a)= f(b)-f(a),即f(c)=f(a)+f(b)-f(a).f(c)的近似值是f(a)+f(b)-f(a).课堂小结 通过本节学习,要求大家:掌握直线方程两点式和截距式的发现和推导过程,并能运用这两种形式求出直线的方程.理解数形结合的数学思想,为今后的学习打下良好的基础.了解直线方程截距式的形式特点及适用范围,树立辩证统一的观点,形成严谨的科学态度和求简的数学精神.作业教学后记:计算机技术的发展日新月异,将计算机引进课堂是大势所趋,有条件的学校或教师可以引进或自己制作多媒体课件来辅助教学,以提高教学效果,激发学生兴趣,达到事半功倍的效果.通过这些形象、生动的画面和声音能极大引发学生学习的兴趣,达到意想不到的效果。课题: 直线的一般式方程 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:1.掌握直线方程的一般式,了解直角坐标系中直线与关于x和y的一次方程的对应关系,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.2.会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式,培养学生归纳、概括能力,渗透分类讨论、化归、数形结合等数学思想.3.通过教学,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.批 注教学重点:直线方程的一般式及各种形式的互化.教学难点:在直角坐标系中直线方程与关于x和y的一次方程的对应关系,关键是直线方程各种形式的互化.教学用具:投影仪教学方法:让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。教学过程:导入新课思路1.前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题.思路2.由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A(1,8);(2)在x轴和y轴上的截距分别是-7,7;(3)经过两点P1(1,6)、P2(2,9);(4)y轴上的截距是7,倾斜角是45.由两个独立条件请学生写出直线方程的特殊形式分别为y-8=x-1、=1、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课直线方程的一般式.推进新课新知探究提出问题坐标平面内所有的直线方程是否均可以写成关于x,y的二元一次方程?关于x,y的一次方程的一般形式Ax+By+C=0(其中A、B不同时为零)是否都表示一条直线?我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化?特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化?我们学习了直线方程的一般式Ax+By+C=0,系数A、B、C有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?讨论结果:分析:在直角坐标系中,每一条直线都有倾斜角.1当90时,它们都有斜率,且均与y轴相交,方程可用斜截式表示:y=kx+b.2当=90时,它的方程可以写成x=x1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x、y的二元一次方程,其中y的系数是零.结论1:直线的方程都可以写成关于x、y的一次方程.分析:a当B0时,方程可化为y=-x-,这就是直线的斜截式方程,它表示斜率为-,在y轴上的截距为-的直线.b当B=0时,由于A、B不同时为零必有A0,方程化为x=-,表示一条与y轴平行或重合的直线.结论2:关于x,y的一次方程都表示一条直线.综上得:这样我们就建立了直线与关于x,y的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B不同时为0)叫做直线方程的一般式.注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来.引导学生自己找到答案,最后得出能进行互化.待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1列表说明如下:形 式方程局限各常数的几何意义点斜式y-y1=k(x-x1)除x=x0外(x1,y1)是直线上一个定点,k是斜率斜截式y=kx+b除x=x0外k是斜率,b是y轴上的截距两点式除x=x0和y=y0外(x1,y1)、(x2,y2)是直线上两个定点截距式=1除x=x0、y=y0及y=kx外a是x轴上的非零截距,b是y轴上的非零截距一般式Ax+By+C=0无当B0时,-是斜率,-是y轴上的截距应用示例 例1 已知直线经过点A(6,-4),斜率为-,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-的直线方程的点斜式方程为y+4=-(x-6).化成一般式,得4x+3y-12=0.变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线?(2)系数满足什么关系时,与坐标轴都相交?(3)系数满足什么条件时,只与x轴相交?(4)系数满足什么条件时,是x轴?(5)设P(x0,y0)为直线Ax+By+C=0上一点,证明这条直线的方程可以写成A(x-x0)+B(y-y0)=0.答案:(1)C=0;(2)A0且B0;(3)B=0且C0;(4)A=C=0且B0;(5)证明:P(x0,y0)在直线Ax+By+C=0上,Ax0+By0+C+0,C=-Ax0-By0.A(x-x0)+B(y-y0)=0.2.若直线l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025布草洗涤与客户体验中心建设合同
- 2025版外墙粉刷与外墙防霉防藻合同
- 2025年度企业财务风险预警系统研发聘用合同范本
- 河北省赤城县2025年上半年事业单位公开遴选试题含答案分析
- 2025多股东企业股权变更及简单转让合同
- 2025年特色小镇拆迁房产权交易合同
- 河北省安新县2025年上半年事业单位公开遴选试题含答案分析
- 海南省屯昌县2025年上半年事业单位公开遴选试题含答案分析
- 2025版文化创意产业资产托管与运营合同
- 2025年度全民健身中心体育馆场地租赁服务合同
- 劳动与技术小学开学第一课
- 新诊断心房颤动的护理查房
- 辽宁盘锦中医师承确有专长人员考核考试题含答案2024年
- 《WPS AI智能办公应用大全》全套教学课件
- 新疆疫苗管理办法
- 生产策划管理办法
- 2025年重庆出租车资格证区域考试题库区域考试
- 低氯血症护理查房
- 虫害外包服务商管理制度
- 医疗废物监督管理课件
- 2025年党章党规党纪知识竞赛题库附含答案
评论
0/150
提交评论