




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学函数知识点总结 亲爱的同学们,高中生活到如今感觉如何,是不是满满的都是酸爽?现在的你们应该都会面临着步入高中以来第一次全校大规模的考试期中考试了,是不是或多或少心里会有些小紧张呢?这些紧张想必是因为对知识点的理解掌握不充分导致的吧,以下是为大家的高一数学函数知识点总结,希望大家喜欢哦! 必修一 一、集合 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y (3)元素的无序性:如:a,b,c和a,c,b是表示同一个集合 3.集合的表示:如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 u注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+整数集Z有理数集Q实数集R 1)列举法:a,b,c 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。x?R|x-32,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合 例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等” 即:任何一个集合是它本身的子集。AA 真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) 如果AB,BC,那么AC 如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 u有n个元素的集合,含有2n个子集,2n-1个真子集 二、函数 1、函数定义域、值域求法综合 2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法 5、二次函数根的问题一题多解 &指数函数y=ax aa*ab=aa+b(a0,a、b属于Q) (aa)b=aab(a0,a、b属于Q) (ab)a=aa*ba(a0,a、b属于Q) 指数函数对称规律: 1、函数y=ax与y=a-x关于y轴对称 2、函数y=ax与y=-ax关于x轴对称 3、函数y=ax与y=-a-x关于坐标原点对称 &对数函数y=logax 如果,且,那么: 1?+; 2-; 3. 注意:换底公式 (,且;,且;). 幂函数y=xa(a属于R) 1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1); (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸; (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 方程的根与函数的零点 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。 即:方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. (1)0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. (2)=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. (3)0时,a的方向和a的方向相同,当 设、是实数,那么:(1)()a=(a)(2)()a=aa(3)(ab)=ab(4)(-)a=-(a)=(-a)。 向量的加法运算、减法运算、数乘运算统称线性运算。 向量的数量积 已知两个非零向量a、b,那么|a|b|cos叫做a与b的数量积或内积,记作a?b,是a与b的夹角,|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。 四、三角函数 1、善于用“1“巧解题 2、三角问题的非三角化解题策略 3、三角函数有界性求最值解题方法 4、三角函数向量综合题例析 5、三角函数中的数学思想方法 必修四 角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在轴上的角的集合为 终边在轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角终边相同的角的集合为 4、已知是第几象限角,确定所在象限的方法:先把各象限均分等份,再从轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为终边所落在的区域. 5、长度等于半径长的弧所对的圆心角叫做弧度. 口诀:奇变偶不变,符号看象限. 公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k+)=sin cos(2k+)=cos tan(2k+)=tan cot(2k+)=cot 公式二: 设为任意角,的三角函数值与的三角函数值之间的关系: sin(+)=-sin cos(+)=-cos tan(+)=tan cot(+)=cot 公式三: 任意角与-的三角函数值之间的关系: sin(-)=-sin cos(-)=cos tan(-)=-tan cot(-)=-cot 公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系: sin(-)=sin cos(-)=-cos tan(-)=-tan cot(-)=-cot 公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系: sin(2-)=-sin cos(2-)=cos tan(2-)=-tan cot(2-)=-cot 公式六: /2及3/2与的三角函数值之间的关系: sin(/2+)=cos cos(/2+)=-sin tan(/2+)=-cot cot(/2+)=-tan sin(/2-)=cos cos(/2-)=sin tan(/2-)=cot cot(/2-)=tan sin(3/2+)=-cos cos(3/2+)=sin tan(3/2+)=-cot cot(3/2+)=-tan sin(3/2-)=-cos cos(3/2-)=-sin tan(3/2-)=cot cot(3/2-)=tan (以上kZ) 其他三角函数知识: 同角三角函数基本关系 同角三角函数的基本关系式 倒数关系: tan?cot=1 sin?csc=1 cos?sec=1 商的关系: sin/cos=tan=sec/csc cos/sin=cot=csc/sec 平方关系: sin2()+cos2()=1 1+tan2()=sec2() 1+cot2()=csc2() 两角和差公式 两角和与差的三角函数公式 sin(+)=sincos+cossin sin(-)=sincos-cossin cos(+)=coscos-sinsin cos(-)=coscos+sinsin tan+tan tan(+)= 1-tan?tan tan-tan tan(-)= 1+tan?tan 倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2=2sincos cos2=cos2()-sin2()=2cos2()-1=1-2sin2() 2tan tan2= 1-tan2() 半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) 1-cos sin2(/2)= 2 1+cos cos2(/2)= 2 1-cos tan2(/2)= 1+cos 万能公式 万能公式 2tan(/2) sin= 1+tan2(/2) 1-tan2(/2) cos= 1+tan2(/2) 2tan(/2) tan= 1-tan2(/2) 和差化积公式 三角函数的和差化积公式 +- sin+sin=2sin-?cos- 22 +- sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025水泥采购合同
- 2025短期工劳动合同
- 2025安置房买卖合同
- 工商银行成都市青羊区2025秋招笔试英语完形填空题专练30题及答案
- 2025合同范本汽车买卖合同书样本
- 中国银行济宁市邹城市2025秋招英文面试20问及高分答案
- 中国银行沧州市青县2025秋招笔试管理营销专练及答案
- 2025年中国建设银行年度借款合同
- 中国银行惠州市惠城区2025秋招笔试英语阅读理解题专练30题及答案
- 邮储银行西宁市城北区2025秋招笔试英语阅读选词题专练30题及答案
- 人生的因拼搏而精彩课件
- 2025年国企综合笔试试题及答案
- 中药用药安全知识培训课件
- 老旧护栏加固施工方案
- 中国资源循环集团有限公司子公司招聘笔试题库2025
- 雨季行车安全培训
- 2025年青海海东通信工程师考试(通信专业实务终端与业务)高、中级考前题库及答案
- 2025年浙江省档案职称考试(档案高级管理实务与案例分析)综合能力测试题及答案
- 景区接待培训课件
- 部编人教版二年级上册语文全册教学设计(配2025年秋改版教材)
- 2025年郑州航空港经济综合实验区招聘社区工作人员120名考试参考题库附答案解析
评论
0/150
提交评论