圆锥曲线自编义之焦点三角形.doc_第1页
圆锥曲线自编义之焦点三角形.doc_第2页
圆锥曲线自编义之焦点三角形.doc_第3页
圆锥曲线自编义之焦点三角形.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆锥曲线自编讲义之焦点三角形(2011福建理7)设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足=4:3:2,则曲线r的离心率等于A B或2 C2 D【答案】A(2011浙江理17)设分别为椭圆的左、右焦点,点在椭圆上,若;则点的坐标是 【答案】(2011全国新课标理14)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点在x轴上,离心率为过点的直线l交C于A,B两点,且的周长为16,那么C的方程为_【答案】(2011天津理18)在平面直角坐标系中,点为动点,分别为椭圆的左右焦点已知为等腰三角形()求椭圆的离心率; 解:(I)设由题意,可得即整理得(舍),或所以(2010浙江理)(8)设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(A) (B) (C) (D)(2010浙江文)(10)设O为坐标原点,,是双曲线(a0,b0)的焦点,若在双曲线上存在点P,满足P=60,OP=,则该双曲线的渐近线方程为(A)xy=0 (B)xy=0(C)x=0 (D)y=0【答案】 D注:本题典型,较难。焦点三角形中,不但注意两腰的设法和底边的长度,还要注意以顶角为主的余弦定理。可以涉及三角形面积、基本不等式等。同类型题见下题,2010全国卷1文。(2010全国卷1文)(8)已知、为双曲线C:的左、右焦点,点P在C上,=,则(A)2 (B)4 (C) 6 (D) 8【答案】B【解析1】.由余弦定理得cosP=4【解析2】由焦点三角形面积公式得: 4(2009北京文、理)椭圆的焦点为,点P在椭圆上,若,则 ;的大小为 .w【解析】,又, 又由余弦定理,得,故应填.(2010全国卷1理)(9)已知、为双曲线C:的左、右焦点,点P在C上,P=,则P到x轴的距离为(A) (B) (C) (D) 【答案】 B(2009年上海卷理)已知、是椭圆(0)的两个焦点,为椭圆上一点,且.若的面积为9,则=_. 【解析】依题意,有,可得4c2364a2,即a2c29,故有b3。【答案】3(2009年广东卷文)已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点.(1)求椭圆G的方程(2)求的面积解(1)设椭圆G的方程为: ()半焦距为c; 则 , 解得 , 所求椭圆G的方程为:. (2 )点的坐标为 不论K为何值圆都不能包围椭圆G.(2009浙江理)已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为 (I)求椭圆的方程;解(I)由题意得所求的椭圆方程为, (2008江西理7)已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是( )A B C D答案 C(2007浙江文)已知双曲线的左、右焦点分别为F1、F2,P是准线上一点,且PF1PF2,|PF1|PF2 |4ab,则双曲线的离心率是 (

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论