



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
鸽巢问题教学设计【教学内容】(人教版)数学六年级下册第70页例1。【教学目标】1、经历“鸽巢原理”(抽屉原理)的探究过程,初步了解“抽屉原理”,会用“鸽巢原理”解决简单的实际问题。2、通过操作发展学生的类推能力,形成比较抽象的数学思维。3、通过“鸽巢原理”的灵活应用感受数学的魅力。【教学重点】:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。【教学难点】:通过操作发展学生的类推能力,形成比较抽象的数学思维。【教学准备】:多媒体课件、铅笔、文具盒等。【教学过程】一、创设情境,导入新知师:孩子们,你们知道刘谦吗?你们喜欢魔术吗?同学们,想 不想看老师表演一下?生:想师:我这里有一副扑克牌从扑克牌中取出两张王牌,找5名学 生,在剩下的52张中任意抽出5张,老师猜。(至少有两张花色一样)师:老师厉害吗?佩服吗?那就给老师点奖励吧!想不想学老师的这个绝招。下面老师就教给你这个魔术,可要用心学了。有没有信心学会?其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题鸽巢问题(板书课题)。课件出示教学目标。(学生集体阅读教学目标)二、自主操作,探究新知1、观察猜测多媒体出示:3枝铅笔,2个文具盒。师:4种不同花型的扑克牌,5位同学任意抽一张,至少有两位同学抽到的花型相同。那么3枝铅笔放进2个文具盒中呢?【不管怎么放,总有一个文具盒中至少放进2枝铅笔。】师:真的是这样吗?为什么会这样呢?你能给大家解释这一现象吗?2、自主思考(1)独立思考:怎样解释这一现象?(2)小组合作,拿铅笔和文具盒实际摆一摆、放一放,看一共有几种情况?3、交流讨论学生汇报是用什么办法来解释这一现象的。【学情预设:】第一种:用实物摆一摆,把所有的摆放结果都罗列出来。学生展示把4枝铅笔放进3个盒子里的几种不同摆放情况。课件再演示四种摆法。请学生观察不同的放法,能发现什么?引导学生发现:每一种摆放情况,都一定有一个文具盒中至少有2枝铅笔。也就是说不管怎么放,总有一个盒子里至少有2枝铅笔。第二种:假设法。教师请只摆了一种或没有摆放就能解释的同学说说自己的想法。师:其他学生是否明白他的想法呢?引导学生在交流中明确:可以假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了3枝铅笔。还剩下1枝,放入任意一个文具盒,那么这个文具盒中就有2枝铅笔了。也就是先平均分,每个文具盒中放1枝,余下1枝,不管放在哪个盒子里,一定会出现总有一个文具盒里至少有2枝铅笔。你可以列个算式吗?根据学生的回答板书:43=11 1+1=24、比较优化。请学生继续思考:如果把4枝铅笔放进3个文具盒,结果是否一样呢?怎样解释这一现象?请学生继续思考:把5枝铅笔放进4个文具盒里呢?把10枝铅笔放进9个文具盒里呢?把100枝铅笔放进99个文具盒里呢?你发现了什么?引导学生发现:只要放的铅笔数比文具盒的数量多1,不论怎么放,总有一个文具盒里至少放进2枝铅笔。抽屉原理一:只要放的物体比抽屉的数量多1,总有一个抽屉里至少放入2个物体。出示计算绝招:物体数抽屉数=商余数至少数=商数+1整除时 至少数=商数6.其实这一发现早在150多年前有一位数学家就提出来了。课件出示你知道吗。“ 抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。三、灵活应用,解决问题1.解释课前所做的魔术。2课件出示25个人坐4把椅子,总有一把椅子上至少坐2人。为什么?(1)学生独立思考,自主探究。(2)交流,说理。3、任意13人中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 18731:2025 EN Spices and condiments - Seasoning oil of Zanthoxyli pericarpium - Specification
- 学前口语考试试题及答案
- 深海养殖自动化喂养系统应用方案
- 混凝土砌块墙体施工技术方案
- 金属雕塑建筑施工组织设计及对策
- 光村镇2024-2025学年第二学期五年级科学期末学业评价题目及答案
- 农村饮水安全巩固提升工程施工方案
- 房屋建筑工程消防安全实施方案
- 碳捕集利用工程项目进度管理方案
- 宅基地空地租赁与农业项目合作合同书
- 粉尘涉爆安全培训考试题及答案
- 危化品经营安全培训管理课件
- 交通安全应急处置预案公司
- 人力资源知识竞赛题库及答案
- 工商业分布式屋顶光伏项目投资分析
- 地铁轨道安全培训报道课件
- 2025年征信题库及答案
- 传染病及其预防(第一课时)课件-2025-2026学年人教版生物八年级上册
- 2025年社工工作者考试真题及答案
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- 浙教版八年级上册数学教材分析与建议
评论
0/150
提交评论