




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
目 录 第一章第一章 绪论绪论 1 1 1 课题的来源与意义 1 1 2 噪声对语音信号的影响 1 1 3 语音信号去噪的发展状况 2 1 4 去噪效果评价方法 2 1 5 本文主要内容 3 第二章第二章 小波变换原理小波变换原理 4 2 1 小波基本理论 4 2 1 1 小波变换的定义 4 2 1 2 小波变换的时域分辨特性 4 2 1 3 几种常用的小波 5 2 2 小波去噪的基本原理 7 2 3 小波去噪方法 7 2 4 小波阈值法去噪 9 2 4 1 小波阈值降噪原理 9 2 4 2 小波阈值去噪方法 10 2 4 3 小波阈值选取规则 10 2 5 小波阈值法去噪仿真实验及结果分析 12 第三章第三章 小波包变换去噪小波包变换去噪 19 3 1 小波包理论 19 3 2 小波包分析 19 3 3 小波包去噪原理 20 3 4 小波包去噪法仿真实验及结果分析 21 结结 论论 25 谢谢 辞辞 26 参考文献参考文献 27 1 第一章 绪论 1 1 课题的来源与意义 随着 3G 时代的到来 移动电话正成为人们信赖的得力助手 而移动终端最基本的 功能 语音通信则还在受到环境噪声和其他语音的干扰 使通话质量受到制约 所以 语 音信号在传输之前尽可能得到净化 对于提高语音通信质量是非常关键的 传统的语音 降噪方法大体分为四大类 噪音对消法 谐波增强法 基于语音生成模型的增强法和基 于短时谱的增强法 但由于语信号的复杂性和非平稳性 特别是清音没有明显的时域 和频域特征 非常类似于白噪音 这些传统的降噪算法还不尽人意 噪音对消法要求 采集到的噪声能够足够 逼真 含噪语音中的噪声 这在实际应用中是非常困难的 谐波增强法必须精确地估计出语音信号的基音周期 这在强噪音干扰下也非易事 基 于语音生成模型虽然能够大幅度地提高信噪比 但会使语音信号有不同程度的失真 基于短时谱的增强算法以短时傅立叶变换 STFT 为基础 而 STFT 从本质上是一种单 分辨率的信号分析方法 对非平稳信号 当信号变化剧烈时 要求有较高的时间分辨 率 当信号变化平缓时要求有较高的频率分辨率 由于 STFT 使用固定窗宽 无法同时 兼顾上述两者 因而也很难获得较好的效果 小波变换属于时频分析方法 它具有多 分辨率的特征 即在低频部分具有较高的频率分辨率和较低的时间分辨率 在高频部 分具有较高的时间分辨率和较低的频率分辨率 很适合探测语音中夹带的瞬态异常变 化的信号 并能展示出其成分 因此被誉为数字显微镜 小波变换是一种信号的时间 尺度 时间 频率 分析方法 它具有多分辨率分析 Multiresolution Analysis 的特点 而且在时频两域都具有表征信号局部特征的 能力 是一种窗口大小固定不变但形状改变的时频局部化分析方法 即在低频部分具 有较高的频率分辨率和较低的时间分辨率 在高频部分具有较高的时间分辨率和较低 的频率分辨率 很适合于探测正常信号中夹带的瞬态反常现象并展示其成分 所以小 波变换用于语音信号的去噪是近些年来比较热门的方法 1 1 2 噪声对语音信号的影响 在语音通讯中 当发送者处于强噪声的环境下 如 电厂 轻型飞机 装甲车辆 机制车间等地时 就会在接收端接收的语音信号中含有大量的噪声 导致听不清或者 听不懂 甚至造成语音通信的中断 当存在噪声干扰时 我们接收到的是噪声和纯净 语音混合在一起的信号 相对于纯净语音 含噪语音的统计特性将根据噪声源特性 噪声统计规律 噪声干扰语音的方式 噪声幅度等因素而发生变化 变化的结果使得 纯净语音的特征分布原来是高斯的 现在是非高斯的 均值和方差等参数也会发生变 化 总之 噪声的影响使得原来纯净语音的模型对于含噪语音来说失效 从而造成识 别性能的急剧下降 因此提出了在发送端将混入语音中的噪声消除的必要性 同样 语音降噪技术是语音信号识别系统的重要组成部分 在含噪语音信号中很难提取准确 2 的语音特征参数 大量的研究表明在识别语音信号之前 有必要进行语音降噪 1 3语音信号去噪的发展状况 语音信号在传输和检测过程中 不同程度地受随机噪声的污染 特别是在小信号采 集和测量中 噪声干扰显得尤其严重 因此 如何消除实际语音信号中的噪声 从混有 噪声的信号中提取有用信息一直是现代语音处理学科研究的焦点之一 目前主要用于 语音除噪的技术有傅里叶变换 WFT 和小波变换 由于傅里叶变换采用的是恒定窗口 技术 因此存在时域和频域局部化的矛盾 不利于语音信号的去噪 WFT把信号划分成许 多小的时间间隔 用傅里叶变换分析每一个时间间隔 以便确定该时间间隔存在的频率 然而通常希望它的时频窗形状是自适应变化的 即对低频信号 其窗口形状自动变得扁 平 对高频信号 其窗口自动变得瘦长 很显然WFT对此无能为力 为了解决这一不足 20世纪80 年代 人们提出了小波理论 小波分析提供了一种自适应的时域和频域同时 局部化的分析方法 无论分析低频或高频局部信号 它都能自动调节时频窗口 以适应实 际分析的需要 可以对信号的任意局部细节加以分析 因此 小波以其具有时频局部化 特点 给语音信号的除噪提供了新的解决途径 目前 利用小波分析进行语音信号除噪 已经引起了许多研究者的注意 常采用的有维纳滤波 卡尔曼滤波 阈值法去噪 对 于维纳滤波 要求带噪信号参数固定 适用于平稳的随机信号 语音信号是非平稳信号 对于卡尔曼滤波 因参数是时变的 适应于非平稳信号 但他要求噪声和信号的统计 特性是先验已知的 对于阈值去噪法 如何选择阈值和进行阈值量化的方式是关键 这 直接影响到信号消噪处理的质量 当采用同一种小波对同一个信号进行去噪处理的时 候 阈值的选取直接关系到去噪效果的优劣 如果阈值选取过小 那么有一部分的噪声 小波系数将不能被置零 从而在去噪后的信号中保留了部分噪声信息 使去噪的效果变 差如果阈值选取偏大 则会将一部分有用信号去掉 使得去噪后的信号丢失有用信息 事实上 单纯对语音信号进行阈值处理是不够的 为了达到更高的信噪比 同时保证语音 信号不失真 需要对语音信号进行综合分析 1 4 去噪效果评价方法 由于影响小波去噪效果的因素很多 选择不同小波基函数 不同的阈值 不同的 分解尺度 其去噪的效果都不尽相同 因此 必须通过一些具体的指标来衡量 常用 的评价指标有均方误差 RMSE 信噪比 SNR 均方误差即原始信号与去噪后的估计信号之间的方差的平方根 其定义式为 1 1 1 2 2 RMSEf nf nn 式中 为原始信号 为去噪后的信号 f n f n 信噪比 SNR 是测量信号中噪声量度的传统方法 其定义式为 1 2 10 10log sz SNRp p 3 式中 为原始信号功率 为信号噪声的功率 信噪比越 2 s n pfnn 2 z pRMSE 大 去噪效果越好 1 5本文主要内容 本文所研究的主要内容是对加性噪声信号的去噪处理 所选取的语音信号是小词 汇量非特定人的孤立短信号 分别加入高斯白噪声和高斯随机噪声 应用小波分析方 法进行分析处理 这也是目前在噪声处理研究中普遍采用的实验方法 本文还介绍小 波去噪方法 重点研究和讨论几种小波阈值去噪法及小波包去噪法 在去噪实验中小 波去噪法的难点在于小波函数的选择及阈值的合理选取问题 本文对选取的信号加入 不同频率噪声 应用不同的小波函数和阈值规则进行去噪处理 针对不同的小波函数 和阈值 以直观波形 信噪比的改善情况来评估语音信号去噪效果 并对去噪效果进 行了简单分析 4 第二章 小波变换原理 2 1 小波基本理论 2 1 1 小波变换的定义 定义一 设 即一维和二维希尔伯特空间的交集 且 则按如下 12 LL 0 0 方式生成函数族 a b 2 1 t a b a a bR a0 称为分析小波 Analyzing Wavelet 或连续小波 称为基本小波或母小波 Mother Wavelet a 称为伸缩因子 b 称为平移因子 定义二 设是基本小波 是按上式给出的连续小波变换 对于函数 a b 2 fL 的连续小波变换定义为 f f Wa b 2 2 1 2 a b f fa b R tb Waf tdt a 这一变换的前提是 2 3 2 1 a 00 b m nb a 0 bR m nZ 则由式 2 1 可得 2 4 2 m 000 at nb m m n ta 从而离散小波变换可定义为 2 5 m nm n R DWff tt dt 以上即为小波变换的基本理论 2 5 2 1 2小波变换的时域分辨特性 我们之所以选择在小波域中滤波 而不直接在Fourier域中滤波 是基于下述考虑 小波变换是在对数尺度上把信号分解为具有相同宽度的频率通道组 频率分辨率随着频 率的增加而降低 图1 1为5阶小波变换频率组成 其中初始信号为 分解为高频部 0 2 d S 分1和低频部分 又进一步分解高频部分和低频部分 依次类推 从 1 d 2 W 1 2 d S 1 2 d S 2 2 d W 2 2 d S 图中可以清楚地看到小波变换在高频处频辨率低而在低频处分辨率高 5 图2 1 小波变换的各阶频率组成 2 1 3 几种常用的小波 2 1 3 1 Haar小波 Haar小波函数是在小波分析中最早用到的一个具有紧支撑的正交小波函数 同时 也是最简单的一个小波函数 Haar小波本身是一个阶跃函数 可以用公式 2 6 所示解 析方法表达 2 6 1 01 2 x 1 1 21 0 x x 其他 尺度函数解析式为 2 7 1 0 x1 x 0 其他 Haar小波的尺度函数和小波函数如图二所示 图2 2 Haar小波的尺度函数和小波函数 2 1 3 2 Daubechies dbN 小波 6 Daubechies小波是由世界著名的小波分析学者Ingrid Daubechies提出的一系二进 小波函数 除了dbl 即haar小波 外 其他小波没有明确表达式 图2 3给出了db4小波的尺度函数和小波函数 小波函数和尺度函数的有效支 撑长度为2N 1 小波函数的消失矩为N db小波族也是应用的比较多的一族小波 图2 3 db4小波的尺度函数和小波函数 2 1 3 3 Symlets symN 小波族 Symlets小波的构造类似于db小波族 两者的差别在于Symlets小波有更好的对称 性 更适合于图像处理 减小重构时的相移 其他的性质如连续性 支集长度 滤波 器长度都和db小波族一致 小波函数矿和尺度函数庐的有效支撑长度为2N 1 小波函 数的消失矩为N 图2 4给出了sym4小波的尺度函数和小波函数 图2 4 sym4小波的尺度函数和小波函数 2 1 3 4 Coifiet小波族 Coiflet小波族有更长的支集长度和更大的消失矩 对称性比较好 图2 5给出了 coiflet2的尺度函数和小波函数 7 语音信号 图2 5 Coiflet2小波的尺度函数和小波函数 2 2小波去噪的基本原理 小波去噪的基本思想可用以下原理框图来概括 信号先经预处理 然后利用小波 变换把信号分解到多尺中最后是在每一尺度下把属于噪声的小波系数去除 保留并增 强属于信号的小波系数 再经过小波反变换 恢复待检测信号 多尺度分解多尺度去噪小波反变换小波域表示 带噪语音信号 图2 6 小波去噪原理框图 由上述小波去噪框图不难辨出 其中的关键是用什么准则来去除属于噪声的小波 系数 增强属于信号的部分 不同的研究者为此提出过各种不同的判据 例如阈值去 噪和屏蔽滤波等都是 这些不同的判据 形成了各种不同的小波去噪方法 2 3 小波去噪方法 小波去噪的方法有很多种 如利用小波分解与重构的方法滤波降噪 利用小波变 换模极大值的方法去噪 对信号进行小波变换后利用空域相关性进行信噪分离 非线 性小波阈值方法去噪 平移不变量小波去噪 以及多小波去噪 非线性小波变换阈值 法 小波变换模极大值法 DJ降噪法 小波包降噪法等等 归结起来主要有三类 模 极大值检测法 阈值去噪法和屏蔽 相关 去噪法 下面就三种方法分别加以介绍 本文主要采用阈值去噪法和小波包去噪法实现语音信号的去噪 1 模极大值检测法 当信号中混入了随机噪声 由于随机噪声导致了信号的奇异 性 奇异性的大小由Lipschitz指数来衡量 随机噪声的Lipschitz指数与信号本身的 奇异点的Lipschitz指数大小不一样 从而它们的小波变换模的极大值在不同尺度下的 传播行为也不一样 利用这一特性可以将有效信号从随机噪声中提取出来 噪声信号 8 2 屏蔽滤波去噪法 小波域滤波是根据信号和噪声在不同尺度上小波变换的不同 形态表现 构造出相应的规则 对信号和噪声的小波变换系数进行处理 处理的实质 在于减小以至完全剔除噪声对应熬小波变换系数 同时最大限度地保留有效信号对应 的小波系数 信号经小波变换之后 其小波系数在各尺度上有较强的相关性 尤其是 在信号的边缘附近 其相关性更加明显 而噪声对应的小波系数在尺度间却没有这种 明显的相关性 因此可以考虑利用小波系数再不同尺度上对应点处的相关性来区分系 数的类别 把低分辨率 大尺度 下的小波变换系数全部保留 高分辨率 小尺度 下的小波系数则只有确认为边沿附近的各点才给予保留 其余的都加以去除 由于噪 声的小波变换系数主要集中在小尺度各层次中 因此经上述处理后 噪声基本去除而 边沿得以保留 通过这样滤波之后的小波系数基本上对应着信号的边缘 达到了去噪 的效果 上述两种方法的核心是模极大值性质的判断 在模极大值检测法中 需要判断出 哪些模极大值是由噪声引起的 而在屏蔽去噪法中 则需要判断出哪些模极大值是由 信号引起的 从理论上分析 在低信噪比的语音信号中 低尺度下的小波系数几乎都 是由噪声控制 而语音信号引起的系数变换情况被淹没其中 想要判断出哪些模极大 值由噪声引起 哪些由语音信号引起非常困难 所以两种方法对处理低信噪比的语音 信号都不适用 3 平移不变量小波去噪 7 在基于小波变换的去噪方法中 在有些情况下信号的 不连续邻域 阈值法去噪会表现出视觉上的非自然信号 如伪吉布斯 Pseud Gibbs 现象 通常这种伪吉布斯现象产生的原因是和信号不连续点的位置有关 主要表现在 信号的奇异点附近 再信号奇异点的邻域内 小波变换去噪时会出现伪吉布斯显现 由此重构的信号在奇异点附近交替出现在较大的上 下峰值 这些峰值并不是原始信 号固有的 而是去噪过程中产生的人为干扰 由于小波变换的局部化特性 其震荡幅 度与信号奇异点的位置密切相关 确切地说 是和信号的特征和小波基元素的特征之 间的精确对准有关 如果我们能通过平移含造信号来改变不连续点的位置 对平移后的信号进行阈值 法去噪处理 则不会产生我们所不希望的伪吉布斯现象 因此 可以通过改变信号的 排列次序 从而改变奇异点在整个信号中的位置来达到降低或消除震荡的目的 例如 用Haar小波对带噪信号做小波变换 当奇异点位于n 2位置时 其变换结果几乎不出现 伪吉布斯现象 而在其他位置如n 3时 将表现出显著的伪吉布斯现象 可以通过预先 的平移使原来不在n 2位置的奇异点平移到n 2位置 抑制伪吉布斯现象的产生 然后 再通过反向的平移 恢复到同原始信号一样的排列次序 从而达到目的 基于平移不变的小波去噪算法如下 1 对带噪信号做循环平移 2 对每次平移后的信号做离散小波变换 得出各尺度上的小波系数 9 3 进行离散小波重构 4 进行逆循环平移 并求平均 得到去噪后的信号 由于一个信号中可能包含几个不连续点 它们之间会相互干扰 也即对于一个不 连续点的最佳平移可能是另一个不连续点的最差平移 因此 可以不采用单一平移 而是采用多次循环平移 并将每次平移去噪后的结果再进行平均 即所谓 平移 去 噪 平均 的平移不变量小波去噪法 可以看出 平移不变量小波去噪法主要用于非 平稳噪声的消除 除上述各种小波去噪方法外 目前应用最多的是小波阈值方法实现 对语音信号的预处理 达到去增强的目的 2 4小波阈值法去噪 信号降噪须满足下列两个原则 1 光滑性 再大部分情况下 降噪后的信号应该至少和原信号具有同等的光滑 性 2 相似性 降噪后的信号和原信号的方差估计应该是最坏情况下的方差最小 常用的小波分解重构消噪方法有 1 强制消噪处理 该方法把小波分解结构中的高频系数全部变为0 即把高频部 分全部滤掉 然后再对信号进行重构处理 这种方法比较简单 但容易丢失信号的有 用成分 2 通用阈值消噪处理 强制消噪处理方法的得到的降噪信号太过于光滑 失去 了原信号的一些信息 不符合相似性降噪原则 阈值消噪算法是对信号作无偏似然估 计 然后根据最坏情况下降噪信号与原信号方差最小的原则确定一个统一的阈值 然 后截去超出这个阈值的小波系数 3 给定阈值消噪处理 在实际的消噪处理过程中 阈值往往可以通过经验获得 而且这种阈值比默认阈值更具有可信度 2 4 1小波阈值降噪原理 由斯坦福大学教授Donoho提出的基于阈值的直接消噪算法是近代小波应用领域的 一大突破 14 对于语音信号的去噪 假定其含噪信号模型可以表示为 2 8 s n nf ne 1nN 其中为真实语音信号 为含有噪声的信号 是一个标准的高斯白噪 f n s n e n 声 即 是噪声级 N为离散采样序列的长度 将上述信号进行小 n 0 1 i eN x n 波变换分解到J个尺度上 设为分解得到的各尺度的小波系数 1 1 j k WjJkN 阈值去噪原理是 携带信息的原始信号在频域或小波域的能量相对集中 表现为 能量密集区域的信号分解系数的绝对值比较大 而噪声信号的能量谱相对分散 所以 其系数的绝对值小 这样我们就可以通过作用阈值的方法过滤掉绝对值小于一定阈值 的小波系数 从而达到降噪的效果 对信号进行小波分解 如果噪声能量明显小于信 10 号能量 则在噪声对应的小波系数也将明显地小于与信号对应的小波系数 选择一个 合适的阈值处理小波系数 把低于阈值的小波系数设为零 高于阈值的小波系数予以 保留或收缩 假设是一个叠加了高斯白噪声的有限长染噪信号 其去噪步骤为 s n 1 选择合适的小波基和小波分解层数J 对含噪声信号s n 进行正交小波分解 得到相应的小波系数 2 对分解后的小波系数进行处理 或去除或对小波系数进行阈值处理得到小 j k W 波系数估计值 j k W 3 降噪后的小波系数经小波反变换 重构 得到去噪后的原始语音信号 2 4 2小波阈值去噪方法 10 11 对小波系数进行估计必需对阈值函数和阈值进行选取 常用的阈值函数有硬阈值 函数 软闽值函数和一些改进的阈值函数如软硬折中阈值函数 半软阈值函数等 1 硬阈值法 硬阈值选取为 2 9 0 j kj k j k j k WW W W 其中为小波系数 为阈值 硬阈值法的含义就是把信号分解后的小波系数的 j k W 绝对值和阈值作比较 小于阈值的点变为0 大于或等于阈值的点保持不变 硬阈值法 在某些点不连续 会在重构语音信号时出现一定振荡 2 软阈值法 软阈值选取为 2 10 sgn W 0 Th Th Th Th 4 极大极小准则 Minimaxi规则 该准则采用一种固定的阈值 它产生一个最小均方误差的极值 在统计学上 这 种极值原理用于设计估计器 由于去噪信号可以假设为未知回归函数的估计量 这种 极值估计器可以实现在最坏条件下最大均方误差最小化 其具体阈值选取规则为 12 2 16 2 4 0 3936 0 1829log 32 0 32 xx Th x 式中x为小波系数的个数 为噪声信号的方差 5 基于小波包变换的Penalty 阈值 小波包分析在对低频信号进行分解的同时 也对高频信号进行分解 具有更加精 确的分析能力 小波包分析的去噪原理与小波分析基本一致 关键也是阈值的选取 在此介绍Penalty阈值法 对小波包分解后的系数按从大到小的顺序排序 设函数 12 kn Cc ccc 2 17 22 2 lg t k k t critctn 以t为变量求的最小值 设使为最小的t值为 那么 式 crit t crit t 0 t 0 t Thc 中n为分解后系数的总个数 为经验系数 其值需大于1 典型值为2 2 5小波阈值法去噪仿真实验及结果分析 根据以上介绍的小波阈值去噪法以及阈值选取规则 采集一段语音信号 对其进 行加噪 再进行去噪处理 使用MATLAB进行仿真实验 实验结果如下 并对消噪效果 进了分析 首先我对选取的语音信号进行加噪声处理 分别加入高斯随机噪声 高斯白噪声 加入高斯白噪声信号后信噪比为0db和5db 以信噪比作为信号去噪效果评价的主要依 据 画出原始信号及加噪后的信号波形 图2 7 原始信号及加噪信号波形 13 计算加噪后信号信噪比 表2 1 加噪后信号的信噪比 含高斯随机噪声信号0db高斯白噪声信号5db高斯白噪声信号 SNR6 49360 0025734 9914 下面我们对含噪信号应用小波阈值法进行消噪处理 首先应用相同的小波函数和 阈值对三种含噪信号进行消噪 消噪后波形如图所示 图2 8 db3小波基硬阈值法消噪后信号波形 上图是采用db3小波基 自适应阈值 硬阈值法 分解层数为5层 对三个加噪信 号进行消噪处理后的波形 由波形可以粗略的看出 阈值法明显的去除了信号中的部 分噪声 但是去噪效果不十分理想 与原始信号相比还有明显的差别 产生这种差别 的主要原因是所选取的小波基以及选取的阈值不是十分合适 计算硬阈值去噪法之后 信号的信噪比 如下表所示 表2 2 硬阈值法去噪后信号的信噪比 高斯随机噪声去噪 后信号 0db高斯白噪声去 噪后信号 5db高斯白噪声去噪后 信号 SNR10 4185 96179 5681 通过客观的比较 信号的信噪比都提升了5db左右 所以可以肯定 阈值法对信号 的消噪有明显的消噪作用 下面我们更换小波函数和阈值来对信号进行消噪处理 为 了简化实验 使结果更直观 我们只对信噪比为0db的含高斯白噪声信号进行去噪处理 14 不同小波基对含噪信号去噪后波形如下图所示 图2 9 应用不同小波基对0db高斯白噪声信号去噪后波形 图中 我首先使用了db3小波基 自适应阈值 软阈值法 分解层数为5层 对信 号进行消噪处理 与原来的db3小波基 硬阈值法进行对比 可以看出 软阈值法的去 噪效果又进一步提高 但是仍与原信号有较大差异 然后我更换小波函数 同样适用 软阈值对信号进行去噪处理 可以看出三种小波相比较 coif2小波对该段含噪语音信 号的处理效果最好 但与其他小波对信号去噪效果差别不大 计算的信噪比如下 表2 3 不同小波函数对0db高斯白噪声去噪后信噪比 db3小波软阈值去噪sym8小波软阈值去噪coif2小波软阈值去噪 SNR7 06757 37257 4327 从以上信噪比也可以看出 应用coif2小波基去噪后得到的信号信噪比最高 与图 中所示去噪波形效果相符 但三种小波去噪后信号信噪比差异很小 结果很接近 所 以不同小波函数对信号去噪效果影响不明显 下面我们根据第二章中提到的四种阈值 选取规则改变阈值来观察去噪效果 我仍然采用0db高斯白噪声信号 选择coif2小波 基 软阈值法 5层小波分解 改变所选取的阈值 来进行测试 15 图2 10 使用不同阈值规则对信号去噪后波形 从图中可以粗略的看出4种阈值选取规则中 启发式阈值和自适应阈值在此次去噪 处理中的效果较好 固定阈值和Minimaxi阈值方法在去除噪声信号的同时也去除了原 信号的有用成分 没有尽可能的保留原始信号 丢失了较多的信息 计算信噪比如下 表2 4 使用不同阈值规则对信号去噪后信噪比 启发式阈值去噪自适应阈值去噪固定阈值去噪Minimaxi阈值去噪 SNR7 18277 43473 07794 1183 从信噪比上也可以看出 启发式阈值和自适应阈值对该信号的去噪效果较好 为了进一步比较不同小波函数及阈值对信号去噪效果的优劣 我选取一段新的语 音信号对其进行如上步骤 以获得更多的是实验数据 比较试验结果 以此对小波阈 值法去噪进行更准确的研究和讨论 首先是对信号加噪声处理 波形图如下 16 图2 11 原信号及加噪后信号波形 信噪比 表2 5 加入不同噪声后信号信噪比 高斯随机噪声0db高斯白噪声5db高斯随机噪声 SNR2 10990 0043835 0011 然后采用不同的小波函数和阈值对其进行去噪处理 选用5db高斯白噪声信号 分 解层数始终为5层 图2 12 使用不同小波对信号去噪后波形 17 计算信噪比 表2 6 使用不同阈值对信号消噪后信噪比 db5小波硬阈值db5小波软阈值sym4小波软阈值coif3小波软阈值 SNR9 876612 30112 312 46 从以上信噪比中可以看出 小波函数相同时 软阈值法比硬阈值法的去噪效果好 很多 与第一组试验中的结果相符 当都采用软阈值法 小波函数不同时 去噪后信 号信噪比差异不十分明显 下面使用相同小波基 改变阈值函数 分别使用4中阈值对 信号消噪处理 仿真波形如下 图2 13 使用不同阈值对信号去噪处理后波形 计算信噪比 表2 7 不同阈值情况下消噪后信号信噪比 自适应阈值启发式阈值固定阈值Minimaxi阈值 SNR12 18811 4939 09349 8791 由此可见 阈值的选取是决定去噪效果好坏的主要影响因素 第二组试验中自适 应阈值的去噪效果也最好 去噪后较原信号提升了7dB左右 启发式阈值提升了 6 4dB 固定阈值和minimaxi只提升了约4dB和5dB 改变选取的语音信号 改变叠加的 噪声对信号的去噪处理也有一定的影响 下面我们具体地通过信噪比来评判去噪结果 18 表2 8 不通阈值处理后两信号各自信噪比 Snr 信噪比 自适应阈 值 启发式阈 值 固定阈值 Minimaxi 阈值 去噪前信噪比 软阈值法6 7372 信号一 0db高斯 白噪声 硬阈值法5 9617 5 98115 58585 90660 002573 软阈值法12 188 信号二 5db高斯 白噪声 硬阈值法9 8766 11 4939 09349 87915 0011 从以上信噪比中可以看出 软阈值法的去噪效果优于硬阈值法的去噪效果 自适 应阈值在选取的四种阈值中去噪效果最好 通过以上实验可以判断出 在进行语音信号去噪处理时 小波函数不同对信号去 噪结果影响不大 但小波阈值的选取尤为重要 它直接关系到去噪效果的好坏 所以 在实际应用小波阈值法处理带噪语音信号时要注意小波阈值的选择 19 第三章 小波包变换去噪 3 1 小波包理论 小波分析的思想是用一族函数去表示或逼近一信号或函数 这一族函数称为小波 函数系 它是通过满足一定条件的小波函数的不同尺度的平移和展缩构成的 用小波 函数系表示的特点是它的时宽与频宽的乘积很小 且在时间和频率轴上都很集中 信 号的分解过程都是将某级近似序列分解为下一级近似序列和细节序列 而对各级细节则 不考虑进行分解的问题 这种信号分析方法对应于频域的二进倍频程划分 它特别适 用于具有丰富低频成分的信号 例如图像 而对另外一些在相对较高的频率范围内存 在若干明显的谱峰信号 例如语音 则处理效果不好 因此 其时频分辨率再低频处 频率分辨率高 在高频处时间分辨率高 频率分辨率低 这正是正交小波基的一大缺 陷 而小波包却具有随分辨的增加 变宽的频谱窗口进一步分割变细的优良品质 j 2 对给定的信号 通过一组低高通组合正交滤波器H G 可以将信号划分到任意频段上 其划分过程如下表所示 表3 1 小波包分解过程 HG HHGHHGGG HHHGHHHGHGGHHHGGHGHGGGGG 3 2 小波包分析 短时傅里叶变换对信号的频带划分是线性等间隔的 多分辨分析可以对信号进行 有效的时频分解 但由于其尺度是按二进制变化的 所以在高频段其频率分辨率较差 而在低频段其时间分辨率较差 即对信号的频带进行指数等间隔划分 那么 在对信 号分解的过程中 对高频信号也可以再进行小波分解 这就是小波包分析方法 小波 包分析能够为信号提供一种更加精细的分析方法 它将频带进行多层次划分 对多分 辨率分析没有细分的高频部分迸一步分解 从而提高了时 频分辨率 关于小波包分析的理解 以一个三层的分解进行说明 其小波包分解树如下图所 示 20 S A1D1 AA2DA2AD2DD2 AAA3DAA3ADA3DDA3AAD3DAD3ADD3DDD3 图3 1 三层小波包分解示意图 在图3 1中 A表示低频 D表示高频 末尾的序号数表示小波分解的层数 即尺度 数 分解的关系为 S AAA3 DAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3 3 1 小波包分解和重构算法如下 设 则可表示为 gn n jj tU n j gt 3 2 2 nj nl jtn t gtdut l 小波包分解算法为 3 3 1 2 2 jnj n lklk k dad 3 4 1 2 1 2 jnj n lklk k dbd 小波包重构算法为 3 5 1 2n 1 2 1 2 2 j njjn llkklkk k dhdgd 3 3小波包去噪原理 在小波包分析中 其信号消噪的算法思想和在小波分析中的基本相同 所不同的 就是小波包提供了一种更为复杂 也更灵活的分析手段 因为小波包分析对上层的低 频部分和高频部分同时进行分解 具有更加精确的局部分析能力 对信号进行小波包分解时 可以采用多种小波包基 通常根据分析信号的要求 从中选择最好的一种小波包基 即最优基 最优基的选择标准是熵标准 在Matlab的 小波工具箱中可以通过besttree函数进行最优基的选择 即计算最优树 应用小波包分析对信号进行消噪处理是其最基本功能 通常 按照如下步骤进行 1 信号的小波包分解 选择一个小波并确定所需分解的层次 然后对信号进行 小波包分解 21 2 确定最优小波包基 对于一个给定的熵标准 计算最优树 这一步不是必须 的步骤 可根据不同的目的进行有选择的使用 3 小波包分解系数的阈值量化 对于每一个小波包分解系数 选择一个恰当的 阈值并对系进行阈值量化 4 信号的小波包重构 根据最低层的小波包分解系数和经过量化处理系数 进 行小波包重构 在上述的各步中 最关键的是如何选取阈值和如何进行阈值量化 在一定程序上 它直接关系到对信号进行消噪处理的质量 12 13 3 4小波包去噪法仿真实验及结果分析 在应用小波包去噪的仿真试验中 我们对选取小波阈值法中选取的二段信号来进 行消噪处理 分别加入高斯随机噪声 0db和5db高斯白噪声 分别选取sym6 db4和 coif2小波基 分解层数为5层 采用第二章阈值法中提到的Penalty 阈值法来计算阈 值 处理结果如下 图3 2 不同小波函数对0db高斯白噪声小波包消噪后波形 从图中可以看出 小波包消噪方法得到的去噪信号几乎与原信号相同 并且保留 了原信号的主要信息 没有信息丢失 并且噪声几乎完全被消除 消噪效果远远好于 小波阈值法 这是因为小波包分析对上层的低频部分和高频部分同时进行分解 具有 更加精确的局部分析能力 所以达到阈值法达不到的消噪效果 下面我们对信号加入 其他噪声来观察去噪效果 22 图3 3 不同小波函数对5db高斯白噪声小波包消噪后波形 图3 4 不同小波函数对高斯随机噪声小波包消噪后波形 23 对选取的第二段信号 我加入0db高斯白噪声和高斯随机噪声进行去噪 将结果与 第一段信号进行对比 图3 5 不同小波函数对高斯随机噪声小波包消噪后波形 图3 6 不同小波函数对0db高斯白噪声小波包消噪后波形 24 表3 2 不同小波函数应用小波包去噪法对不同噪声信号去噪后信噪比 去噪前信号 信噪比 sym6小波小 波包去噪 db4小波小波 包去噪 coif2小波小波 包去噪 db高斯白 噪声 0 1396034 83734 45732 044 5db高斯 白噪声 5 002434 83734 45732 044 信 号 一 高斯随机 噪声 6 447934 83734 45732 044 0db高斯 白噪声 0 03019435 19434 457
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空业务岗位航空发展战略考试试题及答案解析
- 安全可信计算-第3篇-洞察及研究
- 高密市施工合同范本(3篇)
- 安徽省自考试题及答案
- 9 我心中的“110”(教学设计)统编版道德与法治三年级上册
- 金融借款抵押担保及建筑工程施工进度监理合同
- 城市地下管线维修服务合同范本
- 环保旅游活动安全责任协议
- 跨境电商合作入股合同范本
- 商科专业面试题目及答案
- 冀教版七年级数学上册《1.7有理数的加减混合运算》同步练习题及答案
- 大学生创新创业基础(创新创业课程)完整全套教学课件
- 中外广告史(第三版) 课件全套 何玉杰 第0-11章 绪论、中国古代广告的发展- 日本广告的发展
- 三年级全一册《劳动与技术》第二单元 活动3《创意剪纸》课件
- 肺结节科普宣教
- 义务教育信息科技课程标准(2022年版)解读
- 空调维保项目进度保障计划
- 放射科室风险评估报告
- 各类组织架构图课件
- 创伤性窒息护理课件
- 人口老龄化对寿险产品需求结构的影响
评论
0/150
提交评论