




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第 8 页 共 8 页课时跟踪检测(四十) 直线、平面平行的判定及其性质(一)普通高中适用作业A级基础小题练熟练快1已知直线a与直线b平行,直线a与平面平行,则直线b与的关系为()A平行B相交C直线b在平面内 D平行或直线b在平面内解析:选D依题意,直线a必与平面内的某直线平行,又ab,因此直线b与平面的位置关系是平行或直线b在平面内2若平面平面,直线a平面,点B,则在平面内且过B点的所有直线中()A不一定存在与a平行的直线B只有两条与a平行的直线C存在无数条与a平行的直线D存在唯一与a平行的直线解析:选A当直线a在平面内且过B点时,不存在与a平行的直线,故选A.3设,是两个不同的平面,m,n是平面内的两条不同直线,l1,l2是平面内的两条相交直线,则的一个充分不必要条件是()Aml1且nl2 Bm且nl2Cm且n Dm且l1解析:选A由ml1,m,l1,得l1,同理l2,又l1,l2相交,所以,反之不成立,所以ml1且nl2是的一个充分不必要条件4(2017全国卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析:选A法一:对于选项B,如图所示,连接CD,因为ABCD,M,Q分别是所在棱的中点,所以MQCD,所以ABMQ .又AB平面MNQ,MQ平面MNQ,所以AB平面MNQ.同理可证选项C、D中均有AB平面MNQ.故选A.法二:对于选项A,设正方体的底面对角线的交点为O(如图所示),连接OQ,则OQAB.因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B、C、D中AB平面MNQ.故选A.5下列命题中,错误的是()A一条直线与两个平行平面中的一个相交,则必与另一个平面相交B平行于同一平面的两个不同平面平行C如果平面不垂直平面,那么平面内一定不存在直线垂直于平面D若直线l不平行平面,则在平面内不存在与l平行的直线解析:选DA中,如果假定直线与另一个平面不相交,则有两种情形:在平面内或与平面平行,不管哪种情形都得出这条直线与第一个平面不能相交,出现矛盾,故A正确;B是两个平面平行的一种判定定理,B正确;C中,如果平面内有一条直线垂直于平面,则平面垂直于平面(这是面面垂直的判定定理),故C正确;D是错误的,事实上,直线l不平行平面,可能有l,则内有无数条直线与l平行6(2018合肥模拟)在空间四边形ABCD中,E,F分别是AB和BC上的点,若AEEBCFFB12,则对角线AC和平面DEF的位置关系是()A平行 B相交C在平面内 D不能确定解析:选A如图,由得ACEF.又因为EF平面DEF,AC平面DEF,所以AC平面DEF.7如图,平面平面,PAB所在的平面与,分别交于CD,AB,若PC2,CA3,CD1,则AB_.解析:平面平面,CDAB,则,AB.答案:8.如图所示,在四面体ABCD中,点M,N分别是ACD,BCD的重心,则四面体的四个面中与MN平行的是_解析:连接AM并延长,交CD于点E,连接BN,并延长交CD于点F,由重心性质可知,E,F重合为一点,且该点为CD的中点E,连接MN,由,得MNAB.所以MN平面ABC且MN平面ABD.答案:平面ABC、平面ABD9在三棱锥PABC中,PB6,AC3,G为PAC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为_解析:过点G作EFAC,分别交PA,PC于点E,F,过点E作ENPB交AB于点N,过点F作FMPB交BC于点M,连接MN,则四边形EFMN是平行四边形(平面EFMN为所求截面),且EFMNAC2,FMENPB2,所以截面的周长为248.答案:810设,是三个平面,a,b是两条不同直线,有下列三个条件:a,b;a,b;b,a.如果命题“a,b,且_,则ab”为真命题,则可以在横线处填入的条件是_(填序号)解析:由面面平行的性质定理可知,正确;当b,a时,a和b在同一平面内,且没有公共点,所以平行,正确故应填入的条件为或.答案:或B级中档题目练通抓牢1(2018湘中名校联考)已知m,n是两条不同的直线,是三个不同的平面,下列命题中正确的是()A若m,n,则mnB若m,m,则C若,则D若m,n,则mn解析:选DA中,两直线可能平行、相交或异面;B中,两平面可能平行或相交;C中,两平面可能平行或相交;D中,由线面垂直的性质定理可知结论正确,故选D.2.如图,透明塑料制成的长方体容器ABCDA1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:没有水的部分始终呈棱柱形;水面EFGH所在四边形的面积为定值;棱A1D1始终与水面所在平面平行;当容器倾斜如图所示时,BEBF是定值其中正确命题的个数是()A1 B2C3 D4解析:选C由题图,显然是正确的,是错误的;对于,A1D1BC,BCFG,A1D1FG且A1D1平面EFGH,FG平面EFGH,A1D1平面EFGH(水面)是正确的;对于,水是定量的(定体积V),SBEFBCV,即BEBFBCV.BEBF(定值),即是正确的,故选C.3.在如图所示的正方体ABCDA1B1C1D1中,E,F分别为棱AB和棱AA1的中点,点M,N分别为线段D1E,C1F上的点,则与平面ABCD平行的直线MN有()A无数条 B2条C1条 D0条解析:选A法一:取BB1的中点H,连接FH,则FHC1D1,连接HE,D1H,在D1E上任取一点M,取D1E的中点O,连接OH,在平面D1HE中,作MG平行于HO,交D1H于G,连接DE,取DE的中点K,连接KB,OK,则易证得OHKB.过G作GNFH,交C1F于点N,连接MN,由于GMHO,HOKB,KB平面ABCD,GM平面ABCD,所以GM平面ABCD,同理,NG平面ABCD,又GMNGG,由面面平行的判定定理得,平面MNG平面ABCD,则MN平面ABCD.由于M为D1E上任意一点,故与平面ABCD平行的直线MN有无数条故选A.法二:因为直线D1E,C1F与平面ABCD都相交,所以只需要把平面ABCD向上平移,与线段D1E的交点为M,与线段C1F的交点为N,由面面平行的性质定理知MN平面ABCD,故有无数条直线MN平面ABCD,故选A.4.如图所示,设正方体ABCDA1B1C1D1的棱长为a,点P是棱AD上一点,且AP,过B1,D1,P的平面交平面ABCD于PQ,Q在直线CD上,则PQ_.解析:平面A1B1C1D1平面ABCD,而平面B1D1P平面ABCDPQ,平面B1D1P平面A1B1C1D1B1D1,B1D1PQ.又B1D1BD,BDPQ,设PQABM,ABCD,APMDPQ.2,即PQ2PM.又知APMADB,PMBD,又BDa,PQa.答案:a5.如图,矩形ABCD中,E为边AB的中点,将ADE沿直线DE翻转成A1DE.若M为线段A1C的中点,则在ADE翻转过程中,正确的命题是_MB是定值;点M在圆上运动;一定存在某个位置,使DEA1C;一定存在某个位置,使MB平面A1DE.解析:取DC中点N,连接MN,NB,则MNA1D,NBDE,平面MNB平面A1DE,MB平面MNB,MB平面A1DE,正确;A1DEMNB,MNA1D定值,NBDE定值,根据余弦定理得,MB2MN2NB22MNNBcos MNB,所以MB是定值,正确;B是定点,所以M是在以B为圆心,MB为半径的圆上,正确;当矩形ABCD满足ACDE时存在,其他情况不存在,不正确所以正确答案:6如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点,求证:(1)BE平面DMF;(2)平面BDE平面MNG.证明:(1)如图,连接AE,设DF与GN的交点为O,则AE必过DF与GN的交点O.连接MO,则MO为ABE的中位线,所以BEMO.又BE平面DMF,MO平面DMF,所以BE平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DEGN.又DE平面MNG,GN平面MNG,所以DE平面MNG.又M为AB中点,所以MN为ABD的中位线,所以BDMN.又BD平面MNG,MN平面MNG,所以BD平面MNG.又DE平面BDE,BD平面BDE,DEBDD,所以平面BDE平面MNG.7.在如图所示的多面体中,四边形ABB1A1和四边形ACC1A1都为矩形设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使DE平面A1MC?请证明你的结论解:存在点M为线段AB的中点,使直线DE平面A1MC,证明如下:如图,取线段AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C与AC1的交点由已知,O为AC1的中点连接MD,OE,则MD,OE分别为ABC,ACC1的中位线,所以MD綊AC,OE綊AC,因此MD綊OE.连接OM,从而四边形MDEO为平行四边形,则DEMO.因为DE平面A1MC,MO平面A1MC,所以DE平面A1MC.即线段AB上存在一点M(线段AB的中点),使DE平面A1MC.C级重难题目自主选做(2018重庆万州区检测)如图,斜三棱柱ABCA1B1C1中,D,D1分别为AC,A1C1上的点(1)当等于何值时,BC1平面AB1D1?(2)若平面BC1D平面AB1D1,求的值解:(1)当1时,BC1平面AB1D1.如图,连接A1B交AB1于点O,连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防安全知识培训课件条幅
- 2025年县级老年大学智能手机教师招聘面试题库附答案
- 海关总署公开遴选公务员面试经典题及答案
- 军队文职人员统一招聘笔试( 会计)经典考题含答案
- 2025年机关事务管理局机关幼儿园招聘面试专项练习含答案
- 2025有关终止商业店铺租赁合同协议书
- 2025城镇购房合同样本
- 2025煤炭购销合同
- 2025年反洗钱知识竞赛试题题库及参考答案
- 农村环境污染治理合作协议书
- 6G多维度切片QoS保障-洞察及研究
- 2025-2026学年外研版(三起)(2024)小学英语四年级上册教学计划及进度表
- 2025年安徽国控集团所属企业招聘7人笔试备考题库及答案解析
- 2025年海南省警务辅助人员招聘考试(公共基础知识)历年参考题库含答案详解(5套)
- 城市道路清扫保洁协议
- 人教版二年级上册数学全册教学设计(配2025年秋新版教材)
- 2025年医学检验在编考试题库
- 特色食品卖场建设方案(3篇)
- 2025年书法级考试题及答案
- 子宫癌肉瘤护理查房
- 乡村产业融合发展路径与振兴策略研究
评论
0/150
提交评论