




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
xx高考试题分类数列、极限和数学归纳法 -1-数列、极限和数学归纳法安徽理?11?如图所示?程序框图?算法流程图?的输出结果是_ (11)15【命题意图】本题考查算法框图的识别?考查等差数列前n项和.【解析】由算法框图可知 (1)1232kkTk?若T?105?则K?14?继续执行循环体?这时k?15?T105?所以输出的k值为15.?18?本小题满分12分?在数1和100之间插入n个实数?使得这2n?个数构成递增的等比数列?将这2n?个数的乘积记作nT?再令,l gnnaT?1n.?求数列na的通项公式?设1t a n t a n,nnnbaa?求数列nb的前n项和nS.?本小题满分13分?本题考查等比和等差数列?指数和对数的运算?两角差的正切公式等基本知识?考查灵活运用知识解决问题的能力?综合运算能力和创新思维能力.解?I?设221,?nl ll?构成等比数列?其中,100,121?ntt则,2121?nnnttttT?,1221ttttTnnn?并利用得),21(1022131?nit tt tnin.1,2lg,10)()()()()2(2122112212?nnTattttt tt tTnnnnnnnn?II?由题意和?I?中计算结果?知-2-.1),3ta n()2ta n(?nnnbn另一方面?利用,ta n)1ta n(1ta n)1ta n()1ta n(1ta nk kk kk k?得.11ta nta n)1ta n(ta n)1ta n(?k kk k所以?231ta n)1tan(nknkknk kbS23t an (1)t an t an (3)t an3 (1)tan1tan1nkk knn?安徽文?7?若数列?na的通项公式是()()nan?g,则aaa?L?A?15(B)12(C)?(D)?7?A【命题意图】本题考查数列求和.属中等偏易题.【解析】法一?分别求出前10项相加即可得出结论?法二?12349103aaaaaa?故aaa?L.故选A.北京理11.在等比数列na中?若112a?44a?则公比q?_?12|naaa?_.【解析】112a?442aq?|na是以12为首项?以2为公比的等比数列?1121|22nnaaa?。 20.若数列nA?1a?2a? (2)nan?满足1|1k kaa?k?1?2?1n?则称nA为E数列。 记12()nnSAaaa?.?1?写出一个满足150aa?且5()0SA?的E数列5A?2?若112a?2000n?证明?E数列nA是递增数列的充-3-要条件是xxna?3?对任意给定的整数 (2)nn?是否存在首项为0的E数列nA?使得()0nSA?如果存在?写出一个满足条件的E数列nA?如果不存在?说明理由。 解?0?1?2?1?0是一具满足条件的E数列A5。 ?答案不唯一?0?1?0?1?0也是一个满足条件的E的数列A5?必要性?因为E数列A5是递增数列?所以)1999,2,1(11?kaak k.所以A5是首项为12?公差为1的等差数列.所以a2000=12+?20001?1=xx.充分性?由于a2000a10001?a2000a10001a2a11所以a2000a19999?即a2000a1+1999.又因为a1=12?a2000=xx,所以a2000=a1+1999.故nnnAkaa即),1999,2,1(011?是递增数列.综上?结论得证。 ?令.1),1,2,1(011?Ak k kkaac则?因为2111112aacaa?-4-?,1211?nncaa?所以13211)3()2()1()(?nnnn aAS?).1()2)(1()1)(1 (2)1(121?nn?因为).1,1(1,1?nkk k?为偶数所以所以)1()2)(1()1)(1*21nc?为偶数,所以要使2)1(,0)(?nnASn必须使为偶数,即4整除*) (144),1(Nmmnmnnn?或亦即.当,1,0,*)(14241414?k k knaaaAENmmn的项满足数列时14?ka),2,1(mk?时?有;0)(,01?nASa;0)(,0,0),2,1(11144?nk kASaamka有时?当nAENmmn数列时,*)(14?的项满足?,1,0243314?kkkaaa当)1(,)(3424?mnNmmnmn时或不能被4整除?此时不存在E数列An?使得.0)(,01?nASa北京文?14?设?0,0A,?4,0B,?4,3Ct?,3Dt。 记?Nt为平行四边形A BC D内部?不含边界?的整点的个数?其中整点是指横、纵坐标都是整数的点?则?0N?Nt的所有可能取值为。 6?6?7?8-5-?20?本小题共13分?若数列12:, (2)nnAaaan?满足11(1,2,1)k kaakn?则称nA为E数列?记?12+nnSAaaa?。 ?I?写出一个E数列5A满足13=0aa?II?若1=12,=2000an?证明?E数列nA是递增数列的充要条件是=xxna?III?在1=4a的E数列nA中?求使得?nSA=0成立的n的最小值解?0?1?0?1?0是一具满足条件的E数列A5。 ?答案不唯一?0?1?0?-1?0也是一个满足条件的E的数列A5?必要性?因为E数列A5是递增数列?所以)1999,2,1(11?kaak k.所以A5是首项为12?公差为1的等差数列.所以a2000=12+?20001?1=xx.充分性?由于a2000a10001?a2000a10001a2a11所以a2000a19999?即a2000a1+1999.又因为a1=12?a2000=xx,所以a2000=a1+1999.-6-故nnnAkaa即),1999,2,1(011?是递增数列.综上?结论得证。 ?111111kkkkk kaaaaaa?所以有?2113aa?3212aa?4311aa?8713aa?9814aa?相加得?1290aaa?所以在1=4a的E数列nA中?使得?nSA=0成立的n的最小值为9。 福建理16?(本小题满分13分)已知等比数列na的公比3q?前3项和3133S?()求数列na的通项公式?()若函数()s in (2)(0,0)fxAxA?在6x?处取得最大值?且最大值为3a?求函数()fx的解析式?解?()由3133,3qS?得113a?所以23nna?()由()得33a?因为函数()fx最大值为3?所以3A?又当6x?时函数()fx取得最大值?所以s in()13?因为0?故6?所以函数()fx的解析式为()3s in (2)6fxx?。 福建文17?本小题满分12分?已知数列an中?a1?1?a3?3。 ?求数列an的通项公式?-7-?若数列an的前k项和Sk?35?求k的值。 解?由a1?1?a3?3得2d?所以an?3?2n? (1)35kSk kk?解得k?7。 广东理11.等差数列?na前9项的和等于前4项的和.若141,0kaaa?则k?.10,02,0,0,:10.k:0)61 (31)1(611,61d3d),2(24d)9 (1),(29,24) (29)(,:710479876549415419149?kaaaaaaaaaSSkaaaaaaaSS从而解法二得由即即解法一20.?本小题满分12分?设0,b?数列?na满足111=, (2)22nnnn baabanan?, (1)求数列?na的通项公式? (2)证明?对于一切正整数n,1112nnnba?1111111211,22111112,2.222212112(),2211122,22 (2)12nnnnnnnnnnnnnnn bannaanababnnnnnbaaaaaannbabbabnababbbbnab?解: (1)由可得当时则数列是以为首项为公差的等差数列从而当时,则数列是以为首项为公比的等比数列12212 (2)()(), (2)222, (2). (2)(0,2)2nnnnnnnnnnn bbabbbbbbbanbbbbb?综上-8-1111111111232211123122,2,22 (2) (2),22222,22222222nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnbbaabn bbbnbbabbbnbbbbbbbbb? (2)当b=2时,+1+1,从而原不等式成立;1当b2时,要证+1,只需证+1即证+1即证+即证n21223112121123212121123221,22222221)()()()2222222122222222,.nnnnnnnnnnnnnnnnnnnnbbbbbbbbbbbbbbbbbbnbbbb?而上式左边=(当b2时原不等式也成立从而原不等式成立广东文11?已知?na是递增等比数列?4,2342?aaa?则此数列的公比?q?220?本小题满分14分?设b0,数列na满足ba?1,11 (2)1nnnn baanan?1?求数列的通项公式?2?证明?对于一切正整数,?解?1?-9-?2?。 湖北理12.九章算术“竹九节”问题?现有一根9节的竹子?自上而下各节的容积成等差数列?上面4节的容积共3升?下面3节的容积共4升?则第5节的容积为升.【答案】-10-解析?设该数列的首项为?公差为?依题意?即?解得?则?所以应该填.19.?本小题满分13分?已知数列的前项和为?且满足?N*?.?求数列的通项公式?-11-?若存在N*?使得?成等差数列?试判断?对于任意的N*?且?是否成等差数列?并证明你的结论.解?由已知?得?两式相减得?又所以当时数列为?0?0?0?当时?由已知?所以?于是-12-所以数列成等比数列?即当时综上数列的通项公式为?对于任意的?且?成等差数列?证明如下?当时由?知?此时?成等差数列?当时?若存在N*?使得?-13-?成等差数列?则2=+?由?知数列的公比?于是对于任意的N*?且?所以2=+即?成等差数列?综上?对于任意的?且?成等差数列。 湖北文17.?本小题满分12分?成等差数列的三个正数的和等于15?并且这三个数分-14-别加上 2、 5、13后成为等比数列中的、。 (I)求数列的通项公式?(I I)数列的前n项和为?求证?数列是等比数列。 解?(I)设成等差数列的三个正数分别为?则?数列中的、依次-15-为?则?得或?舍?于是(I I)数列的前n项和?即因此数列是公比为2的等比数列。 湖南文20?本题满分13分?某企业在第1年初购买一台价值为120万元的设备M?M的价值在使用过程中逐年减少?从第2年到第6年?每年初M的价值比上年初减少10万元?从第7年开始?每年初M的价值为上年初的75%?I?求第n年初M的价值的表达式?I I?设若大于80万元?则M继续-16-使用?否则须在第n年初对M更新?证明?须在第9年初对M更新?解析?I?当时?数列是首项为120?公差为10?的等差数列?1xx (1)13010;nann?当6n?时?数列是以为首项?公比为为等比数列?又?所以因此?第年初?M的价值的表达式为(I I)设表示数列的前项-17-和?由等差及等比数列的求和公式得当时?当时?因为是递减数列?所以是递减数列?又所以须在第9年初对M更新?湖南理 12、设是等差数列的前项和?且?则答案?25解析?由可得?所以。 -18-江苏13.设?其中成公比为q的等比数列?成公差为1的等差数列?则q的最小值是_.答案?.解析?由题意?而的最小值分别为1?2?3?.本题主要考查综合运用等差、等比的概念及通项公式?不等式的性质解决问题的能力,考查抽象概括能力和推理能力?本题属难题.-19-20.?本小题满分16分?设M为部分正整数组成的集合?数列na的首项11?a?前n项和为nS?已知对任意整数k属于M?当nk时?)(2knknknSSSS?都成立.?1?设M=?1?22?a?求的值?2?设M=?3?4?求数列的通项公式.答案:?1?即?所以?n1时?成等差?而?2?由题意?当时?由?1?2?得?-20-由?3?4?得?由?1?3?得?由?2?4?得?由?7?8?知?成等差?成等差?设公差分别为?由?5?6?得?由?9?10?得?成等差?设公差为d,在?1?2?中分别取n=4,n=5得?-21-解析?本题主要考查数列的概念,通项与前n项和的关系,等差数列概念及基本性质、和与通项关系、集合概念、全称量词,转化与化归、考查分析探究及逻辑推理解决问题的能力?其中?1?是中等题?2?是难题.江西理5.已知数列的前项和满足?且?那么A.1B.9C.10D.55【答案】A【解析】?可得?可得?同理可得?故选A-22-18.?本小题满分12分?已知两个等比数列?满足?.?1?若?求数列的通项公式?2?若数列唯一?求的值.【解析】?1?设的公比为?则?由?成等比数列得?-23-即?解得?所以的通项公式或.?2?设的公比为?则由?得由得?故方程?*?有两个不同的实根.由唯一?知方程?*?必有一根为0?代入?*?得.江西文5.设为等差数列?公差d=-2?-24-为其前n项和.若?则=?A.18B.20C.22D.24答案?B解析?21.(本小题满分14分?1?已知两个等比数列?满足?若数列唯一?求的值?2?是否存在两个等比数列?使得成公差为的等差数列?若存在?求的通项公式?若-25-存在?说明理由?解?1?要唯一?当公比时?由且?最少有一个根?有两个根时?保证仅有一个正根?此时满足条件的a有无数多个?不符合。 当公比01?q时?等比数列首项为a?其余各项均为常数0?唯一?此时由?可推得符合-26-综上?。 ?2?假设存在这样的等比数列?则由等差数列的性质可得?得?要使该式成立?则=或此时数列?公差为0与题意不符?所以不存在这样的等比数列。 辽宁理17?本小题满分12分?已知等差数列an满足a2=0?a6+a8=-10?I?求数列an的通项公式?II?求数列的前n项和?-27-?I?设等差数列的公差为d?由已知条件可得解得故数列的通项公式为?5分?II?设数列?即?所以?当时?所以综上?数列-28-?12分辽宁文5?若等比数列an满足anan+1=16n?则公比为B A?2B?4C?8D?1615?Sn为等差数列an的前n项和?S2=S6?a4=1?则a5=_?1全国理?17?本小题满分12分?等比数列的各项均为正数?且?)求数列的通项公式?设求数列的前n项和.?17?解?设数列an的公比为q?由得-29-所以。 由条件可知a0,故。 由得?所以。 故数列an的通项式为an=13n。 ?=故所以数列的前n项和为全国文?17?本小题满分12分?-30-设等差数列满足?。 ?求的通项公式?求的前项和及使得最大的序号的值。 解?由及?得?所以数列的通项公式为?所以时取得最大值。 -31-全国理?4?设为等差数列的前项和?若?公差?则(A)8(B)7(C)6(D)5【答案】?D【命题意图】?本小题主要考查等差数列的通项公式及前项和公式等有关知识。 【解析】?解得。 另外?本题也可用等差数列的前项和公式进行计算。 ?20?本小题满分12分?注意?在试题卷上作答无?效?-32-设数列满足且111111nnaa?.?求na的通项公式?设11nnabn?记?证明?.【命题立意】?本小题主要考查数列的通项公式、等差数列的概念、递推数列、不等式等基础知识和基本技能?同时考查分析、归纳、探究和推理论证问题的能力。 在解题过程中也渗透了化归与转化思想方法.难度较小?学生易得分。 【解析】?由知数列是首项为?公差为1的等差数列。 ?由?知-33-全国文 (17)(本小题满分l0分)(注意?在试题卷上作答?无效?)设等比数列的前项和为,已知求和【解析】设等比数列的公比为?由题解得所以如果则如果则-34-山东理15.设函数,观察:根据以上事实?由归纳推理可得?当且时?.-35-【答案】【解析】观察知:四个等式等号右边的分母为,即,所以归纳出分母为的分母为,故当且时?.20.?本小题满分12分?等比数列中?分别是下表第 一、 二、三行中的某一个数?且123,aaa中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414-36-第三行9818?求数列?na的通项公式?若数列?nb满足?求数列的前项和.【解析】?由题意知,因为是等比数列,所以公比为3,所以数列的通项公式.?因为=,所以=-=-=-37-,所以=-=-22l n2 (2)l n3nnn?.?20?本小题满分12分?等比数列?na中?123,aaa分别是下表第 一、 二、三行中的某一个数?且123,aaa中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818?求数列?na的通项公式?若数列?nb满足? (1)l nnnnnbaa?求数列?nb的前项和.山东文没有新题陕西理13?观察下列等式1=1-38-2+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49?照此规律?第个等式为.【分析】归纳总结时?看等号左边是子的变化规律?右边结果的特点?然后归纳出一般结论?行数、项数及其变化规律是解答本题的关键?【解】把已知等式与行数对应起来?则每一个等式的左边的式子的第一个数是行数?加数的个数是?等式右边都是完全平方数?行数等号左边的项数1=1112+3+4=9-39-233+4+5+6+7=25354+5+6+7+8+9+10=4947?所以?即【答案】14?植树节某班20名同学在一段直线公路一侧植树?每人植一棵?相邻两棵树相距10米?开始时需将树苗集中放置在某一树坑旁边?使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小?这个最小值为?米?【分析】把实际问题转化为数学模型,然后列式转化为函数的最值问题?-40-【解】?方法一?设树苗放在第个树坑旁边?如图?12?1920那么各个树坑到第i个树坑距离的和是?所以当或时?的值最小?最小值是1000?所以往返路程的最小值是2000米.?方法二?根据图形的对称性?树苗放在两端的树坑旁边?所得路程总和相同?取得一个最值?所以从两端的-41-树坑向中间移动时?所得路程总和的变化相同?最后移到第10个和第11个树坑旁时?所得的路程总和达到另一个最值?所以计算两个路程和即可。 树苗放在第一个树坑旁?则有路程总和是?树苗放在第10个?或第11个?树坑旁边时?路程总和是?所以路程总和最小为2000米.【答案】200019?本小题满分12分?如图?从点P1?0?0?作轴的垂线交曲线于点?曲线在点处的切线与-42-轴交于点?再从做轴的垂线交曲线于点?依次重复上述过程得到一系列点?记点的坐标为?1?试求与的关系?2?求?【分析】?1?根据函数的导数求切线方程?然后再求切线与轴的交点坐标?2?尝试求出通项的表达式?然后再求和?-43-【解】?1?设点的坐标是?在点处的切线方程是?令?则?2?于是有?-44-即?陕西文10?植树节某班20名同学在一段直线公路一侧植树?每人植一棵?相邻两棵树相距10米?开始时需将树苗集中放置在某一树坑旁边?现将树坑从1到20依次编号?为使各位同学从各自树坑前来领取树苗所走的路程总和最小?树苗可以放置的两个最佳?坑位的编号为?A?和?B?和(C)和(D)和【分析】根据选项分别计算四种情形的路程和?或根据路程和的变化规律直接得出结论?【解】选D?方法一?选项具体分析结论A和?10 (1219)23800?比较各个路程和可B?10 (128)2 (1211)22040?10 (129)10 (1210)2?=2000C?10 (129)10 (1210)2?=2000-45-D和?路程和都是2000知D符合题意?方法二?根据图形的对称性?树苗放在两端的树坑旁边?所得路程总和相同?取得一个最值?所以从两端的树坑向中间移动时?所得路程总和的变化相同?最后移到第10个和第11个树坑旁时?所得的路程总和达到另一个最值?所以计算两个路程和进行比较即可。 树苗放在第一个树坑旁?则有路程总和是10 (1219)2?19 (119)10238002?树苗放在第10个?或第11个?树坑旁边时?路程总和是10 (129)10 (1210)2?9 (19)10 (110)10210222?所以路程总和最小为2000米.上海理14.已知点O(0,0)、Q0(0,1)和点R0(3,1)?记Q0R0的中点为P1?取Q0P1和P1R0中的一条?记其端点为Q 1、R1?使之满足?记Q1R1的中点为P2?取Q1P2和P2R1中的一条?记其端点为Q 2、R2?使之满足.依-46-次下去?得到?则.18.设是各项为正数的无穷数列?是边长为的矩形的面积?则为等比数列的充要条件是?A?是等比数列.?B?或是等比数列.?C?和均是等比数列.-47-?D?和均是等比数列?且公比相同.22.?本大题满分18分?第1小题满分4分?第二小题满分6分?第3小题满分8分?已知数列和的通项公式分别为?.将集合中的元素从小到大依次排列?构成数列?1?写出?2?求证?在数列中?但不在数列中的项恰为?-48-?3?求数列的通项公式. 22、?任意?设?则?即假设?矛盾?在数列中、但不在数列中的项恰为。 -49-?当时?依次有?上海文 2、计算=23.?本题满分18分?第1小题4分?第2小题6分?第3小题8分?已知数列和的通项公式分别为-50-?.将集合中的元素从小到大依次排列?构成数列?1?求三个最小的数?使它们既是数列中的项?又是数列中的项?2?数列中有多少项不是数列中的项?请说明理由?3?求数列的前项和. 23、解?三项分别为。 ?分别为-51-?。 四川理8?数列的首项为3?为等差数列且?若则?则?A?0?B?3?C?8-52-?D?11答案?B解析?为等差数列?由?及解得?故?即?故?相加得?故?选B?11?定义在上的函数满足?当时?设在上的最大值为?且的前项和为?则-53-?A?3?B?C?2?D?答案?D解析?当时?当时?当时?当时?则?选D?20?本小题共12分?设d为非零实数?写出a1?a2,?a3并判断an是否为等比数列?若是?给出证明?若不是?说明理由?-54-?设bn=n dan?求数列bn的前n项和Sn?本小题考查等比数列和组合数的基础知识以及基本的运算能力?分析问题、解决问题的能力和化归与转化等数学思想?解?由已知可得?当?时?因此?-55-由此可见?当时?故an是以为首项?为公比的等比数列?当时?an不是等比数列?由?可知?-56-57-?从而?当时?当时?两边同乘以得?式相减可得?化简即得?综上?四川文9?数列an的前n项和为Sn?若a1=1?an+1=3Sn?n1?则a6=?A?344?B?344+1?C?44?D?44+1-58-答案?A解析?由an+1=3Sn?得an=3Sn?1?n2?相减得an+1?an=3(Sn?Sn?1)=3an?则an+1=4an?n2?a1=1?a2=3?则a6=a244=344?选A?20?本小题共12分?已知是以a为首项?q为公比的等比数列?为它的前n项和?当、成等差数列时?求q的值?当、成等差数列时?求证?对任意自然数k?、也成等差数列?本小题考查等比数列和等差数列的基础知识以及基本运算能力和分析问题、解决问题的能力?-59-解?由已知?因此?当、成等差数列时?可得?化简得?解得?若?则的每项?此时、显然成等差数列?若?由、成等差数列可得?即?-60-得?因此?所以?、也成等差数列?天津理6?已知是首项为的等比数列?是的前项和?且?则的前项和为?或?或-61-?【解】设数列的公比为?由可知?于是又?于是?即?因为?则?数列的首项为?公比为?则前项和?故选?-62-22?本小题满分分?在数列中?且对任意?成等差数列?其公差为?若?证明成等比数列?若对任意?成等比数列?其公比为?()设,证明是等差数列;()若,证明.-63-【解】?解法1?由题设可得?所以?因为?所以?从而由成等差数列?其公差为得?于是?因此?所以?-64-于是当时?对任意?成等比数列?解法2?用数学归纳法? (1)当时?因为成公差为的等差数列?及?则?当时?因为成公差为的等差数列?及34a?则458,12aa?由?所以成等比数列?所以当时?结论成立? (2)假设对于结论成立?即-65-成公差为等差数列?成等比数列?设?则?又由题设成公差为等差数列?则?因此?解得?于是?再由题设成公差为等差数列?-66-及?则?因为?所以?于是成等比数列?于是对结论成立?由 (1)? (2)?对对任意,结论成立?()证法1?由成等差数列?成等比数列,则,即?因为,可-67-知,从而?即?所以是等差数列?且公差为?证法2?由题设,所以.?因为,可知,于是?-68-所以是等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态保护区建设项目环境影响评价与生态补偿合同
- 民法典视角下行政合同与民事合同纠纷解决路径
- 酒店集团区域经理选拔及市场拓展合作合同
- 蜂蜜收购合同协议书范本模板3篇
- 商品房购房分期合同5篇
- 建筑工地劳务用工合同范本4篇
- 小区供暖行业合同
- 转正题库(农网理论题库)练习测试题附答案
- 甘肃律师收费管理办法
- 留学机构销售管理办法
- 小学音乐开学第一课教学课件
- 消毒供应中心医疗废物处理
- 学校食堂菜谱及定价方案
- 《电商直播》中职全套教学课件
- 45号钢的安全系数和许用应力
- 万象城商业年终总结
- 人教版四年级数学上册【全册教案】
- 个人开车与单位免责协议书经典版
- 夏商西周王朝的更替课件
- 劳动关系协调师竞赛技能竞赛考试题及答案
- 设备拆装施工方案
评论
0/150
提交评论