【教学设计】《角的概念的推广》(数学北师大高中必修4).docx_第1页
【教学设计】《角的概念的推广》(数学北师大高中必修4).docx_第2页
【教学设计】《角的概念的推广》(数学北师大高中必修4).docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

角的概念的推广教学设计本课时编写:双辽一中 张敏u 教材分析本节内容从角大于周角的非负角开始扩充到任意角,使有正角、负角、零角之分。在平面直角坐标系建立适当的坐标系,根据角的终边在哪一个象限,把角划分为四个象限角和特殊角若干类,于是引入了第几象限角和终边相同的角的集合这样两个概念。再由特殊到一般进行归纳总结。u 教学目标【知识与能力目标】(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解象限角、坐标轴上的角的概念;(3)理解任意角的概念,掌握所有与角终边相同的角(包括角)的表示方法;(4)能表示特殊位置(或给定区域内)的角的集合;(5)能进行简单的角的集合之间运算。【过程与方法目标】类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;由于角本身是一个平面图形,因此,在角的概念得到推广以后,将角放入平面直角坐标系,引出象限角、非象限角的概念,以及象限角的判定方法;通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。【情感态度价值观目标】通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物;揭示知识背景,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。u 教学重难点【教学重点】理解正角、负角和零角和象限角的定义,掌握终边相同角的表示法及判断。【教学难点】把终边相同的角用集合和符号语言正确地表示出来。 u 课前准备多媒体课件u 教学过程一、情境导学同学们,我们在拧螺丝时,按逆时针方向旋转会越拧越松,按顺时针方向旋转会越拧越紧。但不知同学们有没有注意到,在这两个过程中,扳手分别所组成的两个角之间又有什么关系呢?请几个同学畅谈一下,教师控制好时间,2-3分钟为宜。这里面到底是怎么回事?这就是我们这节课所要学习的内容。初中我们已给角下了定义,先请一个同学回忆一下当时是怎么定义的?我们把“有公共端点的两条射线组成的图形叫做角”,这是从静止的观点阐述的。二、探究新知【探究1】(1)从风车两侧观察风车的转动方向有什么不同? (2)从正面看风车转过圈,则风车转的角度为多少?从另一面看风车转过2圈,则风车转的角度为多少?【探究2】如果【探究1】的两个角的顶点放在平面直角坐标系的原点,始边落在x轴的正半轴,则角的终边最终落在什么地方? 如果我们从运动的观点来看,角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。(先后用教具圆规和多媒体给学生演示:逆时针转动形成角,顺时针转动而成角,转几圈也形成角,为推广角的概念做好准备)如图,从OA出发,向两个相反方向旋转相同的角度,例如,分别到达OB和OC,怎么区分这两个角呢?1. 正角、负角、零角的概念(打开课件第一版,演示正角、负角、零角的形成过程)我们规定:(板书)按逆时针方向旋转形成的角叫做正角,如图(见课件)。一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点.按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果是零角,那么0。钟表的时针和分针在旋转时所形成的角总是负角为了简便起见,在不引起混淆的前提下,“角”或“”可以记成“”。过去我们研究了0360范围的角如图(见课件)中的角就是一个0360范围内的角(30)如果我们将角的终边OB继续按逆时针方向旋转一周、两周而形成的角是多少度?是不是仍为30的 角?(用多媒体演示这一旋转过程,让学生思考;为终边相同角概念做准备)将终边OB旋转一周、两周,分别得到390,750的角如果将OB继续旋转下去,便可得到任意大小的正角。同样地,如果将OB按顺时针方向旋转,也可得到任意大小的负角(通过课件,动态演示这一无限旋转过程)这就是说,角度并不局限于0360的范围,它可以为任意大小的角(与数轴进行比较)(打开课件第三版)如图(1)中的角为正角,它等于750;(2)中,正角210,负角150,660在生活中,我们也经常会遇到不在0360范围的角,如在体操中,有“转体720”(即“转体2周”),“转体1080”(即“转体3周”)这样的动作名称;紧固螺丝时,扳手旋转而形成的角角的概念经过这样的推广以后,就包括正角、负角和零角例1射线OA绕端点O顺时针旋转800到OB位置,接着逆时针旋转2500到OC位置,然后再顺时针旋转2700到OD位置,求AOD的大小.【设计意图】通过例题的讲解,加深理解。2. 终边相同的表示方法做出 30 ,390 ,-330 思考它们之间有什么关系?由学生进行思考,老师进行总结:一般的, = 300 +k 3600 ,kZ表示与300 终边相同的角的集合.由此可以发现,上面旋转所得到的所有的角(记为),都可以表示成一个0到360的角与k(kZ)个周角的和,即:30十k360(kZ)如果我们把的集合记为S,那么S|30十k360, kZ容易看出:所有与30角终边相同的角,连同30角(k0)在内,都是集合S的元素;反过来,集合S的任一元素显然与30角终边相同。3象限角由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,(板书)我们使角的顶点与原点重合,角的始边与x轴的非负半轴(包括原点)重合,那么角的终边(除端点外)在第几象限,我们就说这个角是第几象限角 (板书) 当角的终边落在坐标轴上时,它不属于任何象限.它叫轴线角例2. 在 003600 间,找出与下列各角终边相同的角,并判定它们是第几象限角(1)-150 ;(2)650;(3)-95015 例3写出终边在x轴上的角的集合(用0360的角表示).例4写出与60角终边相同的角的集合S,并把S中适合不等式360270的元素写出来.(1)60;(2)-21;(3)3631

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论