空间自回归模型及其估计.doc_第1页
空间自回归模型及其估计.doc_第2页
空间自回归模型及其估计.doc_第3页
空间自回归模型及其估计.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3空间自回归模型及其估计李序颖顾岚ABSTRACTIn this paper we discuss the spatial autoregression models. We can use the models to study the data from regions which with spatial dependence . We discuss maximum likelihood estimation (ML E) for the model and the methods of test based on ML E. We also give some results of spatial autoregression models for the fifteen cities of Yangtze River Delta .关键词 : 空间相关 ; 空间自回归模型 ; 极大似然估计一 、概述在经济问题研究中 ,处理的数据分为时间序列数据 、 截面数据以及截面时间序列数据 (panel data) 。应用回归 模型研究变量之间的关系时 ,假设模型满足 Gauss- Markov 条件 ,当研究的数据是时间序列时 , 通常会存在序列相 关 ,针对这类数据的问题可以结合时间序列分析的方法 加以处理 ;如果研究的数据为截面数据时 ,若数据是取自 某一时点 (或时期) 的不同区域 ( 或点 ,以下统称区域) ,如 不同的省份 、市 、县等 ,数据中通常包含区域所处位置的 特性 ,因此 ,各区域之间的数据也会存在相关 ,这种相关 性与时间序列的相关对应 ,称为空间相关 。处理空间相关问题与时间序列相关相比 , 其特殊之 处在于序列相关只有时间维一个方向 , 而空间相关的方 向是多维的 。研究空间相关时 ,基本想法是相邻的区域 比较“相似”,较远的区域不太“相似”,即假定相邻的区域 有较强的相关 ,距离远的区域相关性较弱 ,因此 ,在研究 过程中 , 涉及空间相邻 、空间加权矩阵等概念 , 张尧庭 (1996) 对这些问题进行了讨论 。与处理序列相关问题时 类似 ,处理空间相关问题的一种方法是空间自回归模型 , Cliff 和 Ord (1981) 对其一般模型 、参数估计和检验技术进 行了开拓性的工作 , 本文将着重介绍空间自回归模型及 其估计问题 ,并给出一个案例 。二 、模型及参数的极大似然估计(一) 模型针对截面数据的空间自回归模型的一般形式为 :y = W1 y + X + uu = W u + (1)其中 y 是所研究区域的被解释变量 , X 是解释变量 , u 是空间模型的残差 。 一般形式的空间自回归模型可以派生出其他几种的模型 。当= = 0 时 , 为传统的回归模型 , 它意味着模型 中 ,没有空间特性的影响 。当0 ,= = 0 时 ,为一阶空间自回归模型 。这个 模型类似时间序列分析中的一阶自回归模型 , 反映了变 量在空间上的相关特征 , 即所研究区域的被解释变量如 何受到相邻区域被解释变量的影响 。当0 ,0 ,= 0 时 ,为混合回归与空间自回归模 型 。在这个模型中 ,所研究区域的被解释变量不仅与本 区域的解释变量有关 ,还与相邻区域的被解释变量有关 。 当= 0 ,0 ,0 ,为残差空间自回归模型 。注意到这个模型可以改写为 :( In - W) y = ( In - W) X + 也即所研究区域的被解释变量 ( Y) 不仅与本区域解释变 量 ( X) 有关 ,还与相邻区域的被解释变量 ( 表现为 WY) 以 及解释变量 (表现为 WX) 有关 。(二) 参数估计各种空间自回归模型中的空间相关性从形式上看与 时间序列问题中时间方向上的相关非常类似 , 因此人们 希望将用于滞后相关和序列相关的最小二乘估计 ( OLS E) 的性质直接用于空间的情形 。然而 ,空间相关具有多方 向的特性 ,因此时间序列分析方法中一些有效的方法不 能直接用于空间模型 。下面分别考察空间自回归模型的 最小二乘估计 、极大似然估计 ,以及在极大似然估计时的统计检验问题 。11 最小二乘估计(1) 空间自回归的最小二乘估计经典经济计量学中 ,既使模型中存在滞后因变量 ,只 要残差项不存在序列相关 , OLS E 仍是一致估计 ,因此 ,尽A = I - W1 , B = I - W2 (8)于是一般空间自回归模型为 :A y = X + u , B u = (9)y 的 log 似然函数为 :L = - n log () - n log2 + log | B | + log | A | - 1 管估计量的小样本性质受到影响 ( 不再是无偏估计) , 但2 2估计量是一致的 ,仍可用于渐近推断 。对于空间自回归模型 , 这个结论不成立 。考虑一阶其中22(10)空间自回归模型 :y = Wy + (2) 式中 y 已经中心化 ,是 iid 的残差 ,尽管这个模型相当简 单 ,没有多少实用性 ,但却包含了存在空间滞后相关变量 时对 OLS E 的所有影响 ,因此以它为例不失一般性 。的 OLS E 为 :- 1 = ( Ay - X) BB ( Ay - X) (11)且要求 :| I - W1 | 0 , | I - W2 | 0为求参数,2 的 ML E ,通常通过构造集中似然 函数 (concentrated likelihood function) ,将 = ( XBB X) - 1 ( XBBAy) = ( yL yL )yL y (3)2 = 1 ( Ay - X) BB ( Ay - X) (12)n式中 yL = Wy 为空间滞后相关变量 。将式 (2) 代入式 (3)- 1代入似然函数 ,估计和,然后再估计,2 。(2) 极大似然估计的渐近协差阵 = + ( yL yL )yL(4)在通常的正则条件下 , ML E 是渐近有效的 ,这意味着与在时间序列情形时一样 ,第二项的期望不等于 0 ,因此OLS E 是有偏的 。OLS E 的一致性依赖于下面的两个条 件 :L LPlim n - 1 ( yy ) = Q (5)LPlim n - 1 ( y) = 0 (6)Q 是有限非奇异阵 。对于第一个条件 ,只要对 W 的结构加以适当限制就它们达到 C - R 下界 ,以信息阵的逆的形式给出 : I () - 1 = - E 92 L( 99) - 1 (13) 信息阵的元通过对参数的二阶偏导得到 。将 ML E 的结果代入 ,并对信息阵求逆 ,得到渐近协差阵 。因为这 个方阵的维数是 3 + p ,没有解析解 。Anselin (1988) 给出了信息阵对应于各参数的子矩阵的结果 :I = XB X- 2可以满足 。第二个条件在空间情形时不满足。这时 :LPlim n - 1 ( y) = Plim n - 1W ( I - W) - 1 (7)I = ( B X) BW1 A- 1I = 0X- 2表式中 W 的存在 ,导致除非= 0 , Plim 0 。因此 ,对于空间自回归模型 , OLS E 是有偏的 ,而且不I = tr ( W1 A- 1 ) 2- 1 - 1- 1 - 1论残差的性质如何 ,都不一致 。+ tr ( BW1 A- 1B ) ( BW1 A- 1B ) - 2(2) 残差空间自回归的最小二乘估计+ ( BW1 AX) ( BW1 AX)- 1残差空间自回归对 OLS E 的影响与时间序列的结果I = t r ( W2 B- 1 )BW1 AB - 1 一样 ,参数估计仍是无偏的 ,但不有效 ,因为这时扰动项+ tr W2 W1 A- 1- 1 ) 2B - 1 - 1 ) - 1协差阵不是对角阵 。那么能否利用广义最小二乘估计法I = t r ( W2 B+ tr ( W2 BW2 B (14)( GLS ) 进行参数的估计 ,如普遍用于残差具有序列相关和 异方差性的各种两步 GLS 方法 。基于前述一阶空间自回归模型 OLS E 有偏 ,而且不论 残差的性质如何 ,都不一致的结论 ,对于回归残差存在空 间自回归结构 , OLS E 不能得到空间自回归参数的一致估 计 ,因此 GLS 不适合于空间情形 ,在经典经济计量学中常 用的 Cochrane- Orcutt 迭代法也不适合于空间情形 。21 极大似然估计(1) 似然函数Cliff 和 Ord (1981) 研究了针对空间 AR 模型的 ML 方 法 。Anselin (1988) 给出了一般空间模型的 ML E 及其性质 。引入符号由这个结果 ,可以求得信息阵中的各元素 ,从而得到极大似然估计的渐近协差阵 ,它可用于参数的假设检验 。31 基于极大似然估计的假设检验 空间自回归模型中基于 ML E 的渐近检验方法仍是常用的 Wald ( W) 、似然比 ( L R) 和拉格朗日乘子 ( LM ) 检验。 在一般空间自回归模型中 , 最关注的问题在于是否存在 空间自相关 ( H0 := 0 或= 0) 、回归参数是否显著 。对模型参数的检验为 :H0 : g () = 0 ; H1 : g () 0这里 g 是 q 维向量 ,在对应于感兴趣参数的位置元为 1 , 其余全为 0 。例如 ,考虑模型中空间自回归参数 的显著 性检验 ,对应的约束表为 :0H : (1 ,0) (,2 ) = = 0Wald 检验 ,要对全模型进行估计 ; LM 检验只需要估 计较简单的约束模型 ; 对于 L R 检验 ,需要同时估计约束 和无约束模型 。Wald 、L R 和 LM 检验渐近等价 ,在零假设下成立的条 件下均渐近服从 2 ( q) , q 对应于约束的个数 。在有限样 本时 ,它们得出不同的值 ,检验统计量的值符合下述不等 式 :W L R LM这意味着在有限样本时 , Wald 检验比 LM 更易于否定 H0 。 除了利用 Wald , L R , LM 统计量对回归模型残差是否具有 空间自回归结构进行检验外 ,还可以利用 Moran I 统计量 进行检验 。Moran I 统计量类似于经济计量学模型中的 Durbin- Watson 检验统计量 。Moran I 统计量为 :若 W 是标准化的 :否存在空间特性 ,在一般空间自回归模型中 ,我们采用的 空间加权矩阵为 W1 = W2 = W 。首先构造空间加权矩阵 。我们利用各城市所处的位 置 ,根据相邻与否构造出它们的相邻结构 ,从而得到空间 加权矩阵 ,在空间加权矩阵中 ,相邻的城市对应的元素为1 ,否则为 0 。具体构造城市之间的相邻关系时 ,除了考虑 有共同边界的城市有相邻关系 ,如上海与苏州 、嘉兴等 , 还综合考虑了城市的交通联系 ,如上海与南通、舟山与宁 波的联系 。表 1I = eWe ee若 W 不是标准化的 :I = n eWe上 海南 京镇 江苏 州无 锡常 州南 通扬 州泰 州杭 州嘉 兴湖 州宁 波绍 兴舟 山上海000100100010000南京001001010000000镇江010001011000000苏州100010000011000无锡000101000001000常州011010000000000南通100000001000000扬州011000001000000泰州001000110000000杭州000000000011010嘉兴100100000101000湖州000110000110000宁波000000000000011绍兴000000000100100舟山000000000000100(15)(16)S ee式中 : e 为回归模型 OLS E 的残差 , W : n n 矩阵 , S = wij 。i , jCliff 和 Ord (1981) 给出了基于最小二乘方法时 ,当残差服从正态 , I 统计量服从正态分布 , 如果 W 是标准化 的 ,则 I 统计量的期望和方差 :E ( I) = tr ( PW) ( n - k)V ( I) = t r ( PW PW)+ tr ( MW) 2 + ( tr ( PW) ) 2 d - E ( I) 2P = I - X ( XX) - 1 Xd = ( n - k) ( n - k + 2) (17)k 为回归模型参数的个数 。 三 、案例 长江三角洲地区作为我国经济最具活力的地区之一 ,经济发展水平与居民收入水平的关系如何 ,是人们密切关注的问题 。为此 ,我们以人均 GDP ( 单位 : 元) 代表经 济发展水平 ,以居民人均可支配收入 ( 单位 : 元) 代表居民 收入水平 ,选择长三角 15 个城市 (上海 、杭州 、嘉兴 、湖州 、 宁波 、绍兴 、舟山 、南京 、苏州 、无锡、常州 、镇江 、南通 、扬 州 、泰州) 2001 年的数据 ( 数据来源 : 上海市 、浙江省 、江苏 省 2002 年统计年鉴) :X :人均 GDP ; Y :居民人均可支配收入 。 为研究城市经济发展水平与居民生活的关系 , 我们使用的传统回归模型为 :Y = 0 + 1 X + u在这个模型中 ,我们再引入空间滞后项 ,以考察本问题是对这个矩阵进行标准化 ,分别使每一行的和为 1 ,得 到标准空间加权矩阵 W 。利用一阶空间自回归模型分别研究两个变量是否具 有空间相关 ,结果为表 1 中的模型 (1) 、(2) ,然后估计两个 变量之间普通的回归模型 ,结果为表 1 中的模型 (3) ,最后 估计空间自回归模型 ,结果为表 1 中的模型 (4) (6) 。由表 2 的估计结果 ,我们可以得到如下结论 :(1) 模型 (1) 、(2) 估计的结果表明 ,长江三角洲 15 个 城市居民人均可支配收入有显著的空间相关 , 反映出邻 近城市之间居民收入具有相似性 ,相关程度较高 。但模 型 (2) 中参数的估计值不显著 ,说明人均 GDP 没有显著 的空间相关 。(2) 从模型 (3) (6) 的估计结果看 ,参数 1 均在 1 % 水平下显著 ,说明地区经济发展水平对居民收入有显著 的影响 ,且参数满足 0 1 1 。(3) 对于线性回归模型 (3) ,我们利用 Moran I 统计量 对其残差是否具有空间特性进行检验 ,结果为 :I = 015760p 值为 010015 ,表明残差存在空间相关结构。因此只用普 通线性回归模型(3) 描述是不充分的 ,必须引入空间变量。表 2 模型估计结果模型01R2(1) Y 一阶空间自回归 (2) X 一阶空间自回归 (3) 普通回归模型(4) 一般空间自回归(5) 混合回归空间自回归(6) 残差空间自回归70061767 (010000)12321340 (016289)17771390 (012379)76751470 (010000)01134486 (010041)01108179 (010000)01112116 (010000)01100841 (010000)01605207 (010262)01055807 (018916)01645397 (010327)01581003 (010002)- 01157552 (018221)01647805 (010001)014517010034014823017920017782017585注 :括号内为参数估计显著性检验统计量的 p 值。(4) 用模型 (4) 拟合得到的 R2 有明显改进 ,说明居民 收入存在“空间特性”, 这与 Moran I 统计量检验结果一 致 。我们注意到 ,在模型 (4) 的估计结果中 ,空间自回归参 数显著 ,但残差滞后项参数不显著 。(5) 将模型 ( 4) 的 剔除 , 得到只考虑一阶空间滞后 影响的模型 (5) ;将模型 (4) 的剔除 ,得到只考虑一阶空 间残差滞后影响的模型 (6) 。在模型 (5) 和 (6) 中空间参数 和都分别是显著的 ,两个模型的 R2 都比模型 (3) 有明 显改进 。在模型 (5) 和 (6) 中 ,参数1 的估计值与模型 (3) 的结果相比都略有降低 , 但 p 值都更小 , 这意味着模型 (5) 和 (6) 的估计精度比模型 (3) 更高。(6) 我们对模型 (5) 和 (6) 作进一步比较 。模型 ( 5) 和 (6) 中空间参数和都分别呈现显著 ,这意味着本问题 中 ,分别利用模型 ( 5) 或模型 ( 6) 描述是否存在空间特性 时 ,都显示存在显著的一阶空间滞后特征 。但模型 ( 4) 中 同时包括空间滞后 (体现为参数) 和残差空间滞后项 ( 体 现为参数) 时 ,空间特性主要由模型中的空间滞后项描 述 ,而残差空间滞后项的作用就不显著了 。这表明在影 响居民收入的空间变量中 , 邻近地区居民收入的影响起 主要作用 。综合模型的拟合优度以及模型参数均为统计显著的 要求 ,我们认为模型 (5) 的效果最好 ,即长三角 15 个城市 居民收入水平除了受到当地经济发展水平的影响 , 还受 到周边城市居民收入水平的影响 ,且这种影响是正向的 , 城市人均 GDP 增加 1 元 ,当地居民收入增加约 0111 元 ,而 非普通回归模型估计的约 0113 元。四 、讨论空间自回归模型使用过程中 ,受到空间相邻关系设计 的影响 ,本文案例中采用的是有相邻边界为主的方法 ,在 某些时候 , 区域的相关不一定是根据地理上相邻来定义 的 ,不同的相邻关系定义 ,模型会得到不同的估计结论。由于空间自回归模型的统计推断是基于渐近性质的 ,而且极

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论