免费预览已结束,剩余7页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浅谈常微分方程的数值解法及其应用开题报告 开题报告 浅谈常微分方程的数值解法及其应用 选题的背景、意义1、选题的背景 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解.后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论. 微分方程的形成及发展与力学、天文学、物理学、生物学,以及其他科学技术的发展密切相关.在数学学科内部的许多分支中,微分方程是常用的重要工具之一,微分方程进一步发展的需要,有推动着其它数学分支的发展;相反,常微分方程每一步进展都离不开其他数学分支的支援.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对微分方程的发展产生了深刻的影响.当前计算机的发展更是为微分方程的应用及理论研究提供了非常有力的工具.时至今日,可以说微分方程在所有自然科学领域和众多社会科学领域都有着广泛的应用,如自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等.只要能够列出相应的微分方程,有了解方程的方法,利用它就可以精确地表述事物变化所遵循的基本规律.从微积分理论形成以来,人们一直用微分方程来描述、解释或预见各种自然现象,不断的取得了显著的成效.2、选题的意义 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型等.因而微分方程的研究是与人类社会密切相关的. 1 “常微分方程”是理学院数学系所有专业学生的重要专业基础课之一,也是工科、经济等专业必学内容之一.其重要性在于它是各种精确自然科学、社会科学中表述基本定律和各种问题的根本工具之一,换句话说,只要根据实际背景,列出了相应的微分方程,并且能(数值地或定性地)求出这种方程的解,人们就可以预见到,在已知条件下这种或那种“运动”过程将怎样进行,或者为了实现人们所希望的某种“运动”应该怎样设计必要的装置和条件等等.例如,我们要设计人造卫星轨道,首先,根据力学原理,建立卫星运动的微分方程,列出初始条件,然后求出解,即卫星运行轨道.随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛. 2从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展.从这个角度说,偏微分方程变成了数学的中心. 3 总之,微分方程从它诞生起即日益成为人类认识并进而改造自然、社会的有力工具,成为数学科学联系实际的主要途径之一.文章就常微分进行展开,对其数值解法进行简单的阐述二、研究的基本内容与拟解决的主要问题2.1微分方程概念介绍 2.1.1 微分方程概况 由一元函数得到的方程.即:称含有自变量,未知函数及其导数的关系式 (1)为常微分方程.其中出现的最高阶导数的阶数,叫做常微分方程的阶.例如?,?,是一阶常微分方程. 是二阶常微分方程.设定义于区间上,有直到阶的导数,将它代入(1),使(1)变成关于的恒等式,即就称=为(1)的一个定义于上的解,并称为该解的定义区间. 4 如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程.2.2 微分方程产生的历史背景 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 5 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量. 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型等.因而微分方程的研究是与人类社会密切相关的. 62.3 微分方程发展现状及其基本功能 在数学学科内部的许多分支中,微分方程是常用的重要工具之一,微分方程进一步发展的需要,有推动着其它数学分支的发展;相反,微分方程每一步进展都离不开其他数学分支的支援.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对微分方程的发展产生了深刻的影响.当前计算机的发展更是为微分方程的应用及理论研究提供了非常有力的工具.时至今日,可以说微分方程在所有自然科学领域和众多社会科学领域都有着广泛的应用,如自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等.只要能够列出相应的微分方程,有了解方程的方法,利用它就可以精确地表述事物变化所遵循的基本规律.从微积分理论形成以来,人们一直用微分方程来描述、解释或预见各种自然现象,不断的取得了显著的成效. 72.4常微分方程的数值求解方法2.4.1 Euler 法 Euler法是最简单的数值方法,为求解良态初值问题,的区间。实际上,下面的过程不是要找到满足该初值问题的可微函数,而是要生成点集,并且将这些点作为近似解,即。如何构造“近似满足微方程”的“点集”呢?首先为这些点选择横坐标,为方便起见,将区间划分为个等距子区间,并选择网络点 , k0,1, 其中 (1) 值称为步长。然后近似解 在上, (2) 设,和连续,;利用泰勒定理将在处展开,对每个值,存在一个和之间的值,使得 (3) 将和代人等式(3),得到的表示: (4) 如果步长 h 足够小,则可以忽略 2 次项(包含的项),得到 (5) 这就是欧拉近似。 重复该过程,就能得到近似解曲线的一个点序列。欧拉方法的一般步骤是 , 其中 k 0,1,M-18(6) 2.4.2 泰勒级数法 泰勒级数法有着广泛的应用,并且是比较求解初值问题的各种不同数值方法的标准,它可设计为任意指定的精度。下面首先将泰勒定理用新的公式表示,使之适合于求解微分方程。 定理9.5(泰勒定理)设 ,且在不动点处有N次泰勒级数展开: (1) 其中, (2)表示函数关t的()次全导数。求导公式可以递归地计算: (3) 并且一般有 (4) 其中为导数算子 区间上的初值问题的近似数值解可由各子区间上的公式(1)来推导。次泰勒方法的一般步骤为 (5) 其中在各步有。 次泰勒方法的最终全局误差是阶的,因此可选择所需大小的,使得误差足够小。如果是固定,则理论上可以推导出步长,使之满足任意的最终全局误差。然而在实际运算中,通常用和计算两个近似结果集,然后比较其结果9。 2.4.3 龙格?库塔方法 泰勒方法的优点是最终全局误差的阶为,并且可以通过选择较大的 N 来得到较小的误差。然而泰勒方法的缺点是,需要先确定 N ,并且要计算高阶导数,它们可能十分复杂。每个龙格一库塔(Runge-Kutta )方法都由一个合适的泰勒方法推导而来,使得其最终全局误差为。一种折中方法是每步进行若干次函数求值,从而省去高阶导数计算。这种方法可构造任意 N 阶精度的近似公式。最常用的是N 4 的龙格一库塔方法,它适用于一般的应用,因为它非常精确、稳定,且易于编程。许多专家声称,没有必要使用更高阶的方法,因为提高的精度与增加的计算量相抵消。如果需要更高的精度,则应该使用更小的步长或某种自适应方法。 4 阶龙格一库塔方法(RK4)可模拟N4 的泰勒方法的精度。它基于如下对,的计算: (1)其中,和形如 (2)通过与 N 4 阶的泰勒级数方法的系数匹配,使得局部误差为,龙格和库塔得出了如下方程组: (3) 该方程组有11个方程和13个未知量,必须补充两个条件才可以求解。最有用的选择是 ,(4) 其余变量的解为 (5) 将式(4)和(5)中的值代入式(2)和式(1),得到标准的阶龙格?库塔方法,其描述如下。自初始点开始,利用 (6) 生成近似值序列,其中10 (7) 2.4.4 预报?校正方法 欧拉方法、休恩方法、泰勒方法以及龙格一库塔方法都称为单步长方法,因为它们只利用前一个点的信息来计算下一个点,即计算时只使用了初始点。一般地,只有用来。当计算出若干个点之后,就可以利用几个已计算出的点来计算下一个点。以亚当斯一巴什福斯4步法的推导为例,计算需要,和。该方法不是自启动的,要生成点,必须先给出其4个初始点, (可用前面各节中的方法完成)。 多步法的一个优点是,可以确定它的局部截断误差(local truncation error ,简称 L.T.E.),并可以包含一个校正项,用于在每一步计算中改善解的精确度。该方法还可以确定步长是否小到能得到的精确值,同时又大到能够免除不必要的和费时的计算。使用预报子和校正子的组合在每一步只需要进行两次函数求值11。 2.4.4.1亚当斯一巴什福斯一莫尔顿方法 亚当斯一巴什福斯一莫尔顿方法(Adams?Bashforth?Moulton)是由基本微积分定理推导出的多步法: 1 预报子使用基于点和的的拉格朗日多项式逼近值,并在区间上对式(1)积分,这个过程产生亚当斯一巴什福斯预报子: (2)校正子的推导类似。这时可以实用刚刚计算出的值。基于点,和新的点构造的一个新的拉格朗日多项式逼近,然后在区间上对该多项式积分,即可得到亚当斯一莫尔顿校正子12: (3) 2.4.4.2 米尔恩?辛普森方法 米尔恩?辛普森方法是预报子基于区间上的对的积分: (4) 预报子使用基于和的拉格朗日多项式逼近,在区间上对它积分,得到米尔恩预报子: 5 校正子的推导类似。此时值已知,基于点,和新点构造的新的拉格朗日多项式,然后在区间上对该多项式积分,结果为大家所熟悉的辛普森公式13: (6)三、研究的方法与技术路线、研究难点,预期达到的目标 1.研究内容 (1)阐述常微分方程研究的现状,了解微分方程的形成,发展,以及微分方程在描述客观世界中的作用; (2)掌握一些常见微分方程的数值求解方法; (3)理解如何用常微分方程解决实际问题,能够做到将理论知识与实际问题相结合,利用常微分方程知识解决实际生活中遇到的几个问题. 2.研究方法及技术路线 通过阅读有关常微分方程方面的论著及文献,了解常微分方程研究的现状.采取了从大量阅读已有的数据资料?然后对这些内容进行总结?最后运用相关知识进行分析. 3.研究难点 (1)常微分方程数值求解方法深入研究具有一定的难度; (2)由于论题比较广泛,很难有独创或新颖之处; (3)常微分方程应用领域太广,很难研究到多方面. 4.预期达到的目标 了解常微分方程的形成,发展,以及常微分方程在描述客观世界中的作用,掌握一些常微分方程的数值求解方法,理解如何用常微分方程解决实际问题,能够做到将理论知识与实际问题相结合.四、论文详细工作进度和安排第一阶段(2010年11月24日?2010年12月11日):熟悉毕业论文题目,查阅文献,收集信息、材料并进行加工整理,完成毕业论文文献检索、开题报告、文献综述及外文文献翻译初稿.第二阶段(2010年12月12日?2010年1月10日):完成毕业论文开题报告、文献检索及外文文献翻译,交指导老师.第三阶段(2011年1月11日?2011年2月28日):完成毕业论文的数据收集、论文初稿.第四阶段(2011年2月29日?2011年5月3日):1.进入实习单位进行实习,对论文进行修改;2.完成毕业实习返校,并递交毕业实习报告,进一步完善毕业论文.第五阶段(2011年5月16日?2011年5月23日):准备毕业论文答辩.五、主要参考文献:1 张良勇,董晓芳. 常微分方程的起源与发展J. 高等函授学报自然科学版,20063: 34-38.2 黄赛.常微分方程发展的主要历史沿革J.教育与职业.20062:36-41.3 黄焕福.常微分方程课程建设初探J.教育与职业,200714:146-148.4 林建平.常微分方程早期发展概观J. 南京工程学院学报,20012:1-4.5 周仲旺.几类特殊的常微分方程J.潍坊学院学报.20036: 7.6 邵晓锋,徐卫卫,李龙星.试析常微分方程模型的归结方法J. 黄冈职业技术学院报
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金华政治学考试题及答案
- 备战2026年高考英语考试易错题(新高考)易错点04 名词性从句(解析版)
- 2025年江苏村官考试真题及答案
- 玩家互动行为分析-洞察与解读
- 2025年药品销售专员岗位招聘面试参考试题及参考答案
- 2025年氢能工程师岗位招聘面试参考试题及参考答案
- 2025年场馆运营专员岗位招聘面试参考题库及参考答案
- 2025年网络管理专员岗位招聘面试参考试题及参考答案
- 2025年长途运输经理岗位招聘面试参考题库及参考答案
- 2025年信贷风险控制专员岗位招聘面试参考试题及参考答案
- 2025年文化体育活动中心建设项目可行性研究报告
- 湖南省医保知识培训课件
- 2025四川攀枝花市仁和区事业单位秋季引才19人考试参考题库及答案解析
- 血液透析专科护士进修汇报
- 静脉用药医嘱审核课件
- 光伏工程竣工验收报告标准格式
- 2025年辽宁省交通高等专科学校单招职业技能考试题库及答案
- 2024年中国人民大学建设中心招聘考试真题
- 中医规培接诊能力考核病历范文
- 民航安检防爆培训课件
- Unit 2 Numbers 英语教学课件
评论
0/150
提交评论