




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MRI脂肪抑制技术意义:(1)减少运动伪影、化学位移伪影或其他相关伪影;(2)抑制脂肪组织信号,增加图像的组织对比;(3)增加增强扫描的效果;(4)鉴别病灶内是否含有脂肪,因为在T1WI上除脂肪外,含蛋白的液体、出血均可表现为高信号,脂肪抑制技术可以判断是否含脂,为鉴别诊断提供信息。方法(一)频率选择饱和法:最常用的脂肪抑制技术之一。由于化学位移,脂肪和水分子中质子的进动频率存在差别,在成像序列的RF施加前,先连续施加数个预脉冲,如果预脉冲的频率与脂肪中质子进动频率一致,脂肪组织的将被连续激发而发生饱和现象,而水分子中的质子由于进动频率不同不被激发。这时再施加RF,脂肪组织因为饱和不能再接受能量,因而不产生信号,从而达到脂肪抑制的目的。特点:(1)高选择性。主要抑制脂肪组织信号,对其他组织的信号影响较小。(2)可用于多种序列。(3)场强依赖性较大,在中高场强下使用可取得好的脂肪抑制效果。(4)对磁场的均匀度要求很高。(5)进行大FOV扫描时,因梯度场存在,视野周边区域脂肪抑制效果较差。(6)增加了人体吸收射频的能量。(7)预脉冲将占据TR间期的一个时段,因此会延长扫描时间,并有可能影响图像的对比度。(8)运动区域脂肪抑制效果差。(二)STIR技术:常用的脂肪抑制技术之一。STIR技术是基于脂肪组织短T1特性的脂肪抑制技术。由于人体组织中脂肪的T1值短,180脉冲后其纵向磁化矢量从反向最大到过零点所需的时间也很短,此刻如果选择短TI则可有效抑制脂肪组织的信号。抑制脂肪组织信号的TI等于脂肪组织T1值的69%,不同的场强下脂肪组织的T1值不同,因此抑制脂肪组织的TI值也应作相应调整。在1.5T的MR仪,脂肪组织的T1值约为200250ms,则TI=140175ms时可有效抑制脂肪组织的信号。在1.0T仪上TI应为125140ms;在0.5T仪上TI应为85120ms,在0.35T仪上TI应为75100ms。特点:(1)场强依赖性低。低场MRI仪也能取得较好的脂肪抑制效果。(2)与频率选择饱和法相比,磁场的均匀度要求较低。(3)大FOV扫描能取得较好的脂肪抑制效果。(4)信号抑制的选择性较低。如果某种组织的T1值接近于脂肪,其信号将被抑制,故一般不能应用增强扫描。(5)由于TR延长,扫描时间较长。(三)频率选择反转脉冲脂肪抑制技术:一种新的脂肪抑制技术。在真正RF激发前,先对被检区进行预脉冲激发,这种预脉冲的带宽很窄,中心频率为脂肪中质子的进动频率,仅有脂肪组织被激发,且这一脉冲略大于90,脂肪组织会出现一个较小的反方向纵向磁化矢量,预脉冲结束后,脂肪组织发生纵向弛豫,其纵向磁化矢量将发生从反向到零,然后逐渐恢复到正向直至平衡状态。预脉冲仅略大于90,因此从反向到零需要的时间很短,选择很短的TI(1020ms),仅需要一次预脉冲激发就能对三维扫描容积内的脂肪组织进行很好的抑制,因此采集时间也仅略有延长。该抑制技术一般用于三维快速GRE序列。特点:(1)仅少量增加扫描时间。(2)一次预脉冲激发即完成三维容积内的脂肪抑制。(3)几乎不增加人体射频的能量吸收。(4)对场强的强度和均匀度要求较高。(四)Dixon技术:临床上应用相对较少。是一种水脂分离成像技术,通过对序列TE的调整,获得水脂相位一致(同相位)图像和水脂相位相反(反相位)的图像。如果把两组图像信息相加或相减可得到水质子图像和脂肪质子图像。把同相位图像加上反相位图像后再除以2,即得到水质子图像;把同相位图像减去反相位图像后再除以2,将得到脂肪质子图像。(五)预饱和带技术在RF激发前,先对被检区周围进行预脉冲激发,这种预脉冲的带宽很宽,使质子达到饱和,该区域的任何质子(包括脂肪和水)的信号都受到了抑制,减少由于运动在相位方向上的伪影。严格说,添加预饱和带并不能算是脂肪抑制技术。MRI脂肪抑制技术的原理与临床应用在磁共振成像(以下简称MRI)中,由于人体内脂肪组织中的氢质子和其它组织中的氢质子所处的分子环境不同,使得它们的共振频率不相同;当脂肪和其它组织的氢质子同时受到射频脉冲激励后,它们的弛豫时间也不一样。在不同的回波时间采集信号,脂肪组织和非脂肪组织表现出不同的信号强度。利用人体内不同组织的上述特性,磁共振物理学家们开发出了多种用于抑制脂肪信号的脉冲序列。下面对四种脂肪抑制序列的基本原理、特点及临床应用价值作一个简单的介绍。一 脂肪饱和序列1. 基本原理脂肪饱和(Fat Saturation,FATSAT)方法是一种射频频率选择性脂肪抑制技术。它的基本原理是利用脂肪和水共振频率的微小差异,通过调节激励脉冲的频率和带宽,有选择地使脂肪处于饱和状态,脂肪质子不产生信号,从而得到只含水质子信号的影像。在FATSAT序列开始时,先对所选择的层面用共振频率与脂肪相同的90射频脉冲(饱和脉冲)进行激励,使脂肪的宏观磁化矢量翻转至横向(XOY)平面,在激励脉冲之后,立即施加一个扰相(相位破坏)梯度脉冲,破坏脂肪信号的相位一致性,紧接着施加成像脉冲。由于回波信号采集与饱和脉冲之间时间很短(100ms),使脂肪质子无足够时间恢复纵向磁化矢量,没有信号产生,从而达到脂肪抑制的目的。2. 脂肪饱和序列的特点及临床应用FATSAT技术是在常规成像脉冲序列之前,先用一频率和脂类质子共振频率相同的饱和脉冲对所选择的层面进行激励,因此,该技术可用在所有的MR成像脉冲序列中。FATSAT序列的突出优点是只抑制脂肪信号,而其它组织信号不受影响,因此一般认为该序列对脂肪抑制具有特异性,可靠性较高,特别是在较高场强的磁共振成像系统中,只要饱和脉冲的频率和频带宽度选择合适,即可使脂肪组织的信号强度减低或消除,而非脂肪组织信号几乎不受任何影响。脂肪饱和序列最适合显示解剖细节,如有脂肪的软组织病变的显示、骨与关节成像、眼眶内病变的显示等。在对比增强扫描中,可用于对脂肪信号与增强病变之间的鉴别,特别是在含有大量脂肪组织的区域。脂肪饱和序列通常也可用于抑制或消除化学位移引起的伪影。3. 影响脂肪抑制效果的因素当静磁场强度不均匀时,脂肪和水的进动频率会受局部磁场的影响出现偏差,在这些区域,饱和脉冲的频率可能不等于脂肪共振频率,由此将导致成像区域的脂肪得不到均匀一致的抑制,某些局部的脂肪信号仍然存在,影响对病变组织的诊断与鉴别诊断。目前认为,磁场非均匀性可通过缩小观察野,将兴趣区置于磁场中心和对主磁场进行匀场得到消除。磁场非均匀性多由于局部磁化率不同而引起,如鼻窦骨与空气交界处、右前横膈膜区域,空气与脂肪及肝脏交界处,在兴趣区周围如果存在金属异物或空气积聚也可造成磁场非均匀性,另外磁场非均匀性还可发生在那些解剖结构形态出现明显变化的区域。另外,射频脉冲频率和带宽选择不当会影响脂肪抑制效果。除此之外,在使用表面线圈时,也会影响射频场的均匀性,使所选择的射频脉冲频率发生偏差,这是因为表面线圈只是接收线圈,射频脉冲来自于体线圈,在射频场内由于有表面线圈的存在,使射频脉冲频率受到干扰,偏离所选择的脂肪共振频率,以致于脂肪信号得不到充分的饱和。除了技术因素的影响外,脂肪信号是否得到完全抑制还与脂肪组织内具体成分有关,如部分含水的脂肪组织、少量处于游离状态或以甘油三脂形式存在的脂肪酸等,由于它们与水的共振频率相近,信号得不到完全抑制。另外,对于不同的MR扫描仪,由于静磁场强度不同,脂肪和水的共振德手湎嗖畛潭炔煌诰泊懦慷任?.5T时,脂肪和水的共振频率相差224Hz左右(1.0T时,为150Hz; 0.3T时,为45Hz)。对于低场强磁共振系统,脂肪和水的共振频率差异很小,抑制效果受磁场非均匀性影响较大,因此在低磁场中很难得到比较好的脂肪饱和图像。二 反转恢复序列1. 基本原理反转恢复(Inversion-Recovery,IR)序列是在每个脉冲序列周期开始时,首先对成像层面施加180射频脉冲,使成像层面的宏观磁化矢量翻转至主磁场的反方向,当180脉冲停止,纵向弛豫过程立即开始,经过一定时间后再进行信号读取,信号读取部分可以是自旋回波(IR-SE),也可以是梯度回波(IR-GR),甚至可以是快速自旋回波(IR-FSE)。180翻转脉冲和信号读取部分的第一个激发脉冲之间的间隔时间称为反转时间(Inversion Time,TI),TI是IR序列的重要参数,在脂肪抑制技术中所用的序列为短TI反转恢复(Short TI Inversion-Recovery,STIR)序列。图1为反转恢复自旋回波序列时序图。图1 反转恢复脉冲序列时序图翻转恢复序列抑制脂肪信号的基础是脂肪和水的T 1值不同。当重复时间(TR)足够长时,宏观磁化矢量将经历一个从-Mo到0,再从0到Mo的变化过程,由于脂肪组织的T 1值比水短,纵向磁化比水恢复要快,如果信号读取在脂肪组织的弛豫曲线过零点时进行,则脂肪对纵向磁化矢量没有贡献,无法在数据采集时产生信号,所以用短TI反转恢复序列可以抑制脂肪信号。TI是影响脂肪抑制效果的关键参数,当TR比T1足够长时,只要取TI=0.69T1即可去除脂肪信号。我们知道组织T1值与磁场强度有关,同样抑制脂肪信号的最佳TI也与磁场强度有关,在磁场强度为1.5T时,最佳TI约为140170ms,1.0T时为130160ms,0.3T时为90110ms。2. STIR序列特点及临床应用STIR序列是在脂肪组织弛豫曲线过零点时加入激励脉冲,此时大多数质子没有充分弛豫,仍然处于部分饱和状态,所得MRI信号中不含脂肪信号。但从另一方面看,与脂肪组织弛豫率相近的组织也可能处于部分饱和状态,这些组织会出现信号丢失,因此,一般来说,反转恢复序列的图像信噪比较低。在反转恢复序列中,信号强度与纵向磁化向量的绝对值有关,具有短T1和长T1的组织可能产生相同的信号强度,两种组织之间缺乏特征鉴别,也就是说STIR序列对脂肪信号的抑制缺乏特异性,当某些液体或组织的纵向磁化向量的绝对值与脂肪相近时,其信号也被抑制,例如粘液样组织、出血、蛋白样液体等。相反,脂肪浸润区域或含脂肪的肿瘤组织则因与纯脂肪组织的T1值不一样,反而得不到充分抑制,因此TI应根据脂肪结构、解剖部位及个体间差异合理选择。STIR不但可抑制全部脂肪组织信号,还可抑制部分水信号,它是目前唯一对磁场非均匀性不敏感的脂肪抑制技术。另外,在STIR序列中,T1、T2对比增加,具有长T1和长T2的组织对比非常明显,该特性有助于对肿瘤的检测。STIR序列常用于盆腔病变的检测及鉴别,如: 直肠瘘、脂肪瘤、卵巢畸胎瘤等。图2中,上面两幅图像是翻转恢复序列乳腺脂肪抑制像,下面两幅为梯度序列像。图2. 乳腺脂肪抑制像3. 影响脂肪抑制效果的因素正如前面说述,在STIR序列中,TI是影响脂肪抑制效果的关键参数,当TI值选择不恰当时,被抑制的可能不是所希望的脂肪,而是其它组织信号,从而导致脂肪抑制失败。为了确定抑制脂肪信号的最佳TI,目前已开发了基于频谱显示的TI调谐技术,该技术是将频率选择饱和与STIR相结合,如飞利浦的SPIR序列,GE的SPECIAL序列。另外,在对比增强扫描中,由于顺磁性造影剂可显著缩短血供丰富组织的T1值,而脂肪因少血管,T1值几乎不受影响,STIR序列反而使病变组织与脂肪组织的对比变差,甚至使病灶信号完全丢失,因此在增强扫描时不适宜用STIR序列。三 反相位成像1. 基本原理反相位(Opposed-phase)成像是根据水和脂肪在外磁场的作用下,共振频率不一样,质子间的相位不一致,在不同的回波时间可获得不同相位差的影像这一基本原理而开发的脂肪抑制序列。所谓相位是指在横向平面磁化矢量的相位角。当脂肪质子和水质子处于同一体素中时,由于它们有不同的共振频率,在初始激发后,这些质子间随着时间变化相位亦发生变化,但在激励后的瞬间,脂肪质子和水质子处在同一相位,即它们之间的相位差为零,而水质子比脂肪质子进动频率快,经过数毫秒后,两者之间的相位差变为180,再经过数毫秒后,相对于脂肪质子,水质子完成360的旋转,它们又处于同相位,因此通过选择适当的回波时间,可在水和脂肪质子宏观磁化矢量相位一致或相位反向时采集回波信号。在常规MR成像序列中,同一体素的信号是该体素中水和脂肪质子宏观磁化矢量和的模。在相位一致(In Phase)影像中,水和脂肪信号相加。而在反相位成像时,水和脂肪信号抵消,剩余信号的大小除了受序列的采集参数影响外还取决于该体元内水和脂肪的含量。假定信号采集参数提供质子密度像,如果体元内都是水,则该体元此时表现为高信号;如果体元内都是脂肪,因为图像只提取幅度信息,并不区分信号的正负,该体元也表现为高信号;如果体元内水和脂肪的含量各占50%,信号相减后幅度为零,则该体元表现为低信号。由上可见,反相位成像技术实际上不是一种真正意义上的脂肪抑制技术,但它包含的信息可以帮助有经验的医生有效地区分水和脂肪。一般来说,可以通过很多方法获得反相位的图像,目前临床上主要使用梯度回波序列,所以又通常称为反相位梯度回波技术(Opposed-phase Gradient Echo Technique)。2. 序列特点及临床应用反相位成像技术简单、成像时间短,用于腹部MR成像,可在屏息状态下扫描以消除呼吸伪影,其最大优点是可用于证实少量脂肪以及脂肪和水的混合组织。另外反相位成像技术由于只与脂肪和水质子进动频率有关,与进动频率的绝对值无关,因此受静磁场非均匀性影响较小,因此,该技术可用在各种MR成像系统上。反相位成像最适合抑制含有等量脂肪和水的组织信号,在主要以脂肪或水的组织中,抑制效果较差。例如: 在以纯脂肪为主的病变组织中,成像体素中含有的脂肪酐酸和水信号比纯脂肪信号强度小得多,而脂肪信号相当高,反相位成像很难将脂肪信号抑制,因此,反相位成像通常用于抑制脂肪含量较少的病变组织,如肾上腺瘤、局限性脂肪肝及脂肪浸润、骨髓腔肿瘤、卵巢畸胎瘤等。3. 影响脂肪抑制效果的因素正如前面所讨论,反相位成像对于纯脂肪组织的信号抑制效果较差,对于包含在脂肪组织中的小肿瘤,反相位脂肪抑制序列难于检测出来,如乳腺中的小肿瘤等。在注射对比剂后,也不宜用反相位成像作为脂肪抑制序列。另外,由于共振频率与磁场强度有关,在选取TE时应根据磁场强度而定,如果TE选择不合适,由于T 2 *衰减效应,信号强度随TE增加而下降,可能会将肝脏脂肪浸润或局限性脂肪肝这类良性病变误诊为恶性病变,因此,反相位的TE时间应短于同相位序列。Rofsky等对一组肝脏脂肪病变患者分别采用In Phase和Opposed-phase梯度回波技术扫描,通过对信号强度进行分析后认为,对类似肝脏局限性脂肪浸润这类病灶,如果只用Opposed-phase序列扫描,有可能难于和其它病变鉴别,必要时可用两种成像技术(Opposed-phase,In Phase)扫描,观察病灶的信号强度是否发生变化,以便做出正确诊断。四 Dixon法Dixon法是由Dixon提出,其基本原理与Opposed-phase法相似,分别采集水和脂肪质子的In Phase和Opposed-phase两种回波信号,两种不同相位的信号通过运算,去除脂肪信号,产生一幅纯水质子的影像,从而达到脂肪抑制的目的。Dixon法的缺点是受磁场非均匀性影响较大,计算方法复杂并容易出现错误,因此,目前该方法在临床应用很少。近年来对Dixon法进行了改进,即所谓三点Dixon法(Three-point Dixon),该方法是在脂肪和水共振频率相位移分别为0、180、-180的三个点采集回波信号,由于增加了一个信号采集点用于修正磁场均匀性偏差引起的信号误差,较好地克服了磁场非均匀性对脂肪抑制效果的影响。据Bredella等报道,经改良后的三点Dixon法在低场强开放式磁共振系统中应用,脂肪抑制效果满意,诊断关节软骨损伤的敏感性和特异性均较高,是一种十分有用的检查技术。图3. 膝关节的水脂分离图像脂肪抑制技术是磁共振成像中常用的技术方法之一,主要用于对某些病变组织的鉴别,如肾上腺瘤、脂肪瘤、脂肪浸润及皮脂腺瘤等,改善增强后组织间的对比度、消除脂肪信号对病灶的掩蔽(如眶内病变),或用脂肪抑制技术测量组织内脂肪含量,减少化学位移伪影等。理想的脂肪抑制技术应能根据脂肪含量及信号强度,鉴别该信号所代表的特定组织。脂肪饱和序列主要用于抑制有大量脂肪存在的部位和对比增强扫描中,它的主要缺点是对磁场非均匀性较敏感,不适用于低场强磁共振成像系统。短TI翻转恢复序列对磁场非均匀性不敏感,可在低场强磁共振成像系统中使用,多用于抑制纯脂肪组织和球状脂肪组织,但该序列特异性较差,对具有长T 1和短T 1的组织信号强度难于区分。反相位成像是一种快速、有效的脂肪抑制技术,该序列被推荐用于鉴别含有少量脂肪的病灶,主要缺点是对被脂肪包围的小肿瘤检测可靠性差。最初的Dixon法由于成像时间长,对磁场非均性敏感、易受呼吸运动影响等缺陷,临床应用较少。改进后的Three-point Dixon法克服了上述缺点,可用于低场强开放式磁共振系统中,对关节软骨损伤是非常有效的诊断手段。本文所介绍的几种主要脂肪抑制序列,各有优缺点,临床应用各有侧重,在临床实践中,我们应深刻理解各种脂肪抑制序列的原理,清楚各序列的优点及适用范围,在临床实践中根据不同解剖部位、组织结构及脂肪含量、病灶与相邻组织间的对比等实际因素选用相应的脂肪抑制序列。MRI 也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。MRI的优点* 磁共振成像能对神经结构提供比CT分辨度更佳的成像,而对病人不引起危险.* MRI对显示脑干病变以及后颅凹其他异常的帮助尤其大,因为这个部位的CT扫描常为骨纹伪迹所干扰.* MRI能发现脱髓鞘斑块,早期梗塞,亚临床脑水肿,脑挫伤,初期的经小脑幕脑疝,颅颈交界处异常以及脊髓空洞症.有时,炎症,脱髓鞘与肿瘤病变只有在静脉注射顺磁性造影剂(如钆)增强以后才能被发现.* MRI主要的缺点是费用昂贵,需要特殊的房屋设置.对安装有心脏起搏器者,脑内有磁铁性动脉瘤夹或体内有任何可移动的金属修补物的病人来说,MRI是禁忌的.对椎管内压迫脊髓并且需要紧急干预的一些病变(肿瘤,脓肿),MRI有特殊的诊断价值.MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。核磁共振成像原理编辑本段回目录原子核带有正电,许多元素的原子核,如1H、19FT和31P等进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。自旋系统的磁化矢量由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起共振效应。在射频脉冲停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之能进行空间分辨,就得到运动中原子核分布图像。原子核从激化的状态回复到平衡排列状态的过程叫弛豫过程。它所需的时间叫弛豫时间。弛豫时间有两种即T1和T2,T1为自旋-点阵或纵向驰豫时间T2,T2为自旋-自旋或横向弛豫时间。磁共振最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血液和脑脊液的流动;(d)顺磁性物质(e)蛋白质。磁共振影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共振的信号弱,则亮度也小,从白色、灰色到黑色。各种组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈黑色。核磁共振的另一特点是流动液体不产生信号称为流动效应或流动空白效应。因此血管是灰白色管状结构,而血液为无信号的黑色。这样使血管很容易软组织分开。正常脊髓周围有脑脊液包围,脑脊液为黑色的,并有白色的硬膜为脂肪所衬托,使脊髓显示为白色的强信号结构。核磁共振已应用于全身各系统的成像诊断。效果最佳的是颅脑,及其脊髓、心脏大血管、关节骨骼、软组织及盆腔等。对心血管疾病不但可以观察各腔室、大血管及瓣膜的解剖变化,而且可作心室分析,进行定性及半定量的诊断,可作多个切面图,空间分辨率高,显示心脏及病变全貌,及其与周围结构的关系,优于其他X线成像、二维超声、核素及CT检查。在对脑脊髓病变诊断时,可作冠状、矢状及横断面像。检查目的:颅脑及脊柱、脊髓病变,五官科疾病,心脏疾病,纵膈肿块,骨关节和肌肉病变,子宫、卵巢、膀胱、前列腺、肝、肾、胰等部位的病变。优点:1MRI对人体没有损伤; 2MRI能获得脑和脊髓的立体图像,不像CT那样一层一层地扫描而有可能漏掉病变部位; 3能诊断心脏病变,CT因扫描速度慢而难以胜任; 4对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT。缺点:1和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断; 2对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多; 3对胃肠道的病变不如内窥镜检查; 4体内留有金属物品者不宜接受MRI。核磁共振检查的注意事项 由于在核磁共振机器及核磁共振检查室内存在非常强大的磁场,因此,装有心脏起搏器者,以及血管手术后留有金属夹、金属支架者,或其他的冠状动脉、食管、前列腺、胆道进行金属支架手术者,绝对严禁作核磁共振检查,否则,由于金属受强大磁场的吸引而移动,将可能产生严重后果以致生命危险。一般在医院的核磁共振检查室门外,都有红色或黄色的醒目标志注明绝对严禁进行核磁共振检查的情况。 身体内有不能除去的其他金属异物,如金属内固定物、人工关节、金属假牙、支架、银夹、弹片等金属存留者,为检查的相对禁忌,必须检查时,应严密观察,以防检查中金属在强大磁场中移动而损伤邻近大血管和重要组织,产生严重后果,如无特殊必要一般不要接受核磁共振检查。有金属避孕环及活动的金属假牙者一定要取出后再进行检查。 有时,遗留在体内的金属铁离子可能影响图像质量,甚至影响正确诊断。 在进入核磁共振检查室之前,应去除身上带的手机、呼机、磁卡、手表、硬币、钥匙、打火机、金属皮带、金属项链、金属耳环、金属钮扣及其他金属饰品或金属物品。否则,检查时可能影响磁场的均匀性,造成图像的干扰,形成伪影,不利于病灶的显示;而且由于强磁场的作用,金属物品可能被吸进核磁共振机,从而对非常昂贵的核磁共振机造成破坏;另外,手机、呼机、磁卡、手表等物品也可能会遭到强磁场的破坏,而造成个人财物不必要的损失。 近年来,随着科技的进步与发展,有许多骨科内固定物,特别是脊柱的内固定物,开始用钛合金或钛金属制成。由于钛金属不受磁场的吸引,在磁场中不会移动。因此体内有钛金属内固定物的病人,进行核磁共振检查时是安全的;而且钛金属也不会对核磁共振的图像产生干扰。这对于患有脊柱疾病并且需要接受脊柱内固定手术的病人是非常有价值的。但是钛合金和钛金属制成的内固定物价格昂贵,在一定程度上影响了它的推广应用。进展编辑本段回目录 近几年来新的核磁共振(fMRI)、核磁共振血管造影(MRA)、核磁共振波谱分析(MRS)和弥散成像(DWI)等的出现,推进了神经科学的发展。核磁共振成像血管造影编辑本段回目录 核磁共振成像血管造影(magnetic resonance angiography,MRA)是基于MR成像平面血液产生的“流空效应”而开发的一种核磁共振成像技术。在不使用对比剂的情况下,通过抑制背景结构信号将血管分离出来,单独显示血管结构,可显示成像范围内所有血管,也可显示侧枝血管。MRA的有点是:不需插管、方便省时、无放射损伤及无创性。缺点是:空间分辨率差,不及CTA和DSA;信号变化复杂,易产生伪影;对细小血管显示差。临床主要用于颅内动脉瘤、脑血管畸形、大血
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幕墙改造工程合同范本
- 资质合作合同范本
- 传达室施工方案(3篇)
- 育苗大棚租赁合同范本
- 宁波线上租赁合同范本
- 瓷砖的购销合同范本
- 足浴搞活动策划方案(3篇)
- 三七灰土换填施工方案(3篇)
- 2025年公路工程助理试验检测师资格考试(道路工程)练习题及答案五
- 牛蛙的数学试卷
- 田间道路工程施工图设计说明
- 井下管路安装、维护管理规定
- 私募基金份额代持协议范文
- GB/T 7967-2002声学水声发射器的大功率特性和测量
- GB 38507-2020油墨中可挥发性有机化合物(VOCs)含量的限值
- GA/T 1162-2014法医生物检材的提取、保存、送检规范
- 污水处理厂安全风险清单
- 高级焊工考试题含答案
- 2022年高校教师资格证(高校教师职业道德)考试题库高分300题带解析答案(安徽省专用)
- 《退役军人保障法》知识考试题库(含各题型)
- 口腔科超声波洁牙知情同意书
评论
0/150
提交评论