一元一次方程应用题.doc_第1页
一元一次方程应用题.doc_第2页
一元一次方程应用题.doc_第3页
一元一次方程应用题.doc_第4页
一元一次方程应用题.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、列方程解应用题的主要步骤:1、认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系;2、用字母表示题目中的未知数,并用这个字母和已知数一起组成表示各数量关系的代数式;3、利用这些代数式列出反映某个等量关系的方程(注意所使用的单位一定要统一);4、求出所列方程的解;5、检验所求的解是否使方程成立,又能使应用题有意义,并写出答案。二、对常见应用题的解法分析 1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。(1)倍数关系:通过关键词语是几倍,增加几倍,增加到几倍,增加百分之几,增长率来体现。(2)多少关系:通过关键词语多、少、和、差、不足、剩余来体现。(3)、“比”,“是”,“占”都可化为“”,再根据条件列方程1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元? 2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤? 2、年龄问题 ( 年龄面前人人平等,你加他也加)1,小明今年6年,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的 倍?2,李明今年8岁,父亲是32岁,问几年以后父亲的年龄为李明的3倍。3、等积变形问题:等积变形是以形状改变而体积不变为前提。常用等量关系为:原料体积=成品体积。常用公式1、已知一个用铁丝折成的长方形,它的长为9cm,宽为6cm,把它重新折成一个长比宽多5cm的长方形,则新的长方形的宽是多少? 2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm? 3、如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分的面积为224cm2,求重叠部分面积4现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根? 5、如图是两个圆柱体的容器,它们的半径分别是4cm和8cm,高分别为16cm和10cm,先在第一个容器中倒满水,然后将其全部倒入第二个容器中。(1)问倒完后,第二个容器水面的高度是多少? 4、劳力调配问题:这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。1,有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的二分之一 ,应从乙队调多少人到甲队?2,甲、乙两个工程队分别有188人和138人,现需要从两队抽出116人组成第三个队,并使甲、乙两队剩余人数之比为2:1,问应从甲、乙两队各抽出多少人? 3、某班级开展活动而分为甲乙两个小组,甲队29人,乙队19人:(1) 若从甲组调x名学生到乙组,使得两组人数相等,则可列方程: ;(2) 若从乙组调y名学生到甲组,使得甲组人数是乙组人数的两倍,则可列方程: 。4、如果甲、乙两班共有90人,如果从甲班抽调3人到乙班,则甲乙两班的人数相等,则甲班原有多少人?5、某班级开展植树活动而分为甲乙两个小组,甲队29人,乙队19人,后来发现任务比较重,人手不够,从另外一个班调来12个人分配给两个队,怎样分配才能使甲对人数是乙队的2倍 6、温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台。现在决定给武汉8台,南昌6台。每台机器的运费如表1。若总运费为8400元,则杭州运往南昌的机器应为多少台?表1起点到终点的运费情况 终点起点南昌武汉温州厂4百元/台8百元/台杭州厂3百元/台5百元/台(1)画图表示运送情况 (设杭州运往南昌的机器为x台)(2)若总运费为8400元,则杭州运往南昌的机器应为多少台? 5,分配问题 分析平均分完后比总数多了还是少了,少了加,多了减。1,把一些图书分给某班学生阅读,如果每人分3本,则 剩余20本;如果每人分4本,则还缺25本.问这个班有多少 学生?2、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。 3、学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?4,某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?5、小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。 6,把一些图书分给某班学生阅读,如果每人分3本,则 剩余20本;如果每人分4本,则还缺25本.问这个班有多少 学生?6、比例分配问题:这类问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量1、 如果两个课外兴趣小组共有人数54人,两个小数的人数之比是4:5;那么这两个小组各有多少人?。 2、甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件? 3、 甲乙两人身上的钱数之比为7:6,两人去商店买东西后,甲花去50元,乙花去60元时,此时他们身上的钱数之比为3:2,则他们身上余下的钱数分别是多少?7、配套问题: 这类问题的关键是找对配套的两类物体的数量关系。1:某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母? 3,某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?4,某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米? 5、某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。 8、数字问题: 要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为大于0,小于9的整数),则这个三位数表示为:100a+10b+c。1,一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和是这个两位数的三分之一,求这个两位数。2.一个两位数它的个位数字比十位数字大3,把它的个位数字与十位数字对调后所得的两位数比原来的两位数大27,求原来的两位数 3.两个连续奇数的和为156,求这两个奇数, 4三个连续奇数的和为123,求这三个奇数5,四个连续偶数的和为88求这四个偶数,6、观察下列数:4,9,14,19,24,29,依次规律,在此数列中有没有2004这个数?若有这个数,是第几个数;若没有,请说明理由7.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。9、工程问题:工程问题中的三个量及其关系为:工作总量=工作效率工作时间在题目中未给出工作总量时,设工作总量为单位1。 若甲独做需a天完成,则甲每天完成 ,若乙独做需b天完成,则乙每天完成 则甲,乙合作一天完成 例:一项工程甲队需30天完成任务,则甲每天完成工作量的 ,则工作效率为 ;如果乙队需要20天完成任务,则甲每天完成工作量的 ,则工作效率为 ,两人一起一天可以完成 工作效率之和 1、 某件文件需要打印,小李独立完成需要6个小时,小王独立完成需要8个小时,如果两人合作的话,需要多少时间可以完成?2、一项工作甲工程队单独施工需要30天才能完成,乙队单独需要20天才能完成。现在由甲队单独工作5天之后,剩下的工作再由两队合作完成,问他们需要合作多少天3、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 4、一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?10、行程问题:路程速度时间 速度路程时间 时间路程速度注意:(1)(当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。)(2)路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)(一)、甲、乙二人相向相遇问题甲走的路程乙走的路程总路程 二人所用的时间相等或有提前量(二)、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题甲走的路程乙走的路程提前量 二人所用的时间相等或有提前量1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 2,甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时已过了3小时。求两人的速度。(相遇问题)3,休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?(追击问题).4,从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,求甲,乙两地的距离。5,甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙每小时多走5千米,求甲、乙两人的速度。6,甲、乙二人同时从A地去往相距51千米的B地,甲骑车,乙步行,甲的速度比乙的速度快3倍还多1千米/时,甲到达B地后停留1 小时,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好6个小时,求二人速度各是多少?7、甲、乙两人相距5千米,分别以2千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙,遇到乙后立即掉头奔向甲,遇到甲后又奔向乙直到甲、乙相遇,求小狗所走的路程。8、甲骑自行车从A地到B地,乙骑自行车从B到A地,两人都匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A、B两地间的路程。(三)单人往返各段路程和总路程 各段时间和总时间 匀速行驶时速度不变1,某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。2,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,求甲,乙两地的距离是多少? 。 3,一列列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?4,某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。(当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。)解:方法一:设由A地到B地规定的时间是 x 小时,则 方法二:设由A、B两地的距离是 x 千米,则5,一辆汽车上午10:00从安阳出发匀速行驶,途经曲沟、水冶、铜冶三地,时间如下表,地名安阳曲沟铜冶时间10:0010:1511:00水冶在曲沟和铜冶两地之间,距曲沟10千米,距铜冶20千米,安阳到水冶的路程有多少千米? 6、甲、乙两人相距5千米,分别以2千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙,遇到乙后立即掉头奔向甲,遇到甲后又奔向乙直到甲、乙相遇,求小狗所走的路程。(四)行船问题与飞机飞行问题顺水速度静水速度水流速度 逆水速度静水速度水流速度1,一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。2,某船从A码头顺流而下到达B码头,然后逆流返回,到达A、B两码头之间的C码头,一共航行了7小时,已知此船在静水中的速度为7.5千米时,水流速度为2.5千米/时。A、C两码头之间的航程为10千米,求A、B两码头之间的航程。3、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。4、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。5、小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,求该河的水流速度。6、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。解:设A与B的距离是x千米,(请你按下面的分类画出示意图,来理解所列方程) 当C在A、B之间时, 当C在BA的延长线上时, (五)环行跑道问题(1)环形跑道上,同时同地反向的相遇问题 等量关系: 快者跑的路程+慢者跑的路程800 (2) 环形跑道上,同时同地同向的追击问题(且为第一次相遇)等量关系: 快者跑的路程慢者跑的路程800 (俗称多跑一圈) 1,在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,(1)两人同时同地反向起跑,t分钟后第一次相遇,(2)两人同时同地同向起跑,t分钟后第一次相遇,2,环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3 倍,环城一周是20千米,求两个人的速度。3,甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?(六)、考虑车长的过桥或通过山洞隧道问题【老师提醒】:将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然 1,一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?2,一列火车长150米,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,到这列火车完全通过隧道所需时间是多少?3,一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。【老师解析】:只要将车尾看作一个行人去分析即可,前者为此人通过300米的隧道再加上一个车长,后者仅为此人通过一个车长11,部分与整体问题思路:此类问题中,一般都存在两个等量关系,选择一个关系来设未知数,并表示出其他量,再利用另一个关系来列方程1、学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块砖,其他年级同学每人搬8块,总共搬了400块砖,问初一同学有多少人参加搬砖?2、如果买1本笔记本和1支钢笔刚好需要6元钱,买1本笔记本和4支钢笔,共需18元,那么两种笔的价格分别是多少?12,其他实际应用问题:常用的等量关系:利润(进价*利润率)=售价(标价*折数)进价(成本价)1,服装店将某种服装按成本提高40%标价,又以八折优惠卖出,每件仍获利15元,则每件的成本为多少?2:某商品的进价为1600元,原售价为2200元因库存积压需降价出售,若每件商品仍想获得10%的利润,需几折出售? 3,某商品进价是1000元,标价为1500元,商品要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?(6分) 4:已知甲、乙两种商品的原单价和为100元。因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少?5、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?6、某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。问该文具的进价是每件多少元?常用的等量关系:利息=本金*利率*时间 利息=本金*利率*时间(*120%) (如果需要扣除20%的利息税)1:银行定期壹年存款的年利率为2.5%,某人存入一年后本息922.5元,问存入银行的本金是多少元?2,李阿姨购买了25000元某公司1年期的债券,一年后扣除20%的利息税之后得到本息和为26000元,这种债券的年利率是多少? 增长率问题:1、某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产了百分之几?2、某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,求要这种大米多少公斤? 。3、某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?比赛积分问题:1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了多少道题。2、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛? 综合应用1,小刚为书房买灯。现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。假设两种灯的照明效果一样,使用寿命都可以达到2800小时。已知小刚家所在地的电价是每千瓦时0.5元。设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。(费用=灯的售价+电费)小刚想在这两种灯中选购一盏。当照明时间是多少时,使用两种灯的费用一样多?试用特殊值判断:照明时间在什么范围内,选用白炽灯费用低?照明时间在什么范围内,选用节能灯费用低?2,一体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为1米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。每张五夹板可做两个面,每平方米用漆500克(1)建材商店将一张五夹板按成本价提高40后标价,又以8折优惠卖出,结果每张仍获利4.8元(五夹板必须整张购买):(2)油漆店开展“满100送20,多买多送的酬宾活动”,所购漆的售价为每千克34元试问购买五夹板和油漆共需多少钱?3某村去年种植的油菜籽亩产量达150千克,含油率为40。今年改种新选育的油菜籽后亩产量提高了30千克,含油率提高了10百分点。今年与去年相比,油菜的种植面积减少了40亩,而村榨油厂用本村所产油菜籽的产油量提高了20。(1)求今年油菜的种植面积。设今年油菜的种植面积是x 亩。完成下表后再列方程解答。亩产量(千克/亩)种植面积(亩)油菜籽总产量(千克)含油率产油量(千克)去年 150 40今年 x(2)已知油菜种植成本为200元/亩,菜油收购价为6元/千克。试比较这个村去今两年种植油菜的纯收入。4、某电信

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论