



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等差数列通项公式(教案)襄城三高 周素叶教学目标1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;3.通过参与编题解题,激发学生学习的兴趣.教学重点,难点教学重点: 通项公式的认识;教学难点: 对公式的灵活运用教学用具:实物投影仪,多媒体软件,电脑.教学方法:探究式.教学过程一.复习提问前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.引入新课通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知第一项和公差 一求第n项 ).找学生试举一例如:“已知等差数列 中,首项是2,公差是5求 .第10项”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用(1)已知等差数列 中,首项=5 ,公差d=-6 ,则397是该数列的第_项.(2)已知等差数列 中,首项=2,=20 求公差 (3)已知等差数列 中,公差d=2 , =12求首项 这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由首项 和公差 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于首项 和公差 的二元方程组,以求得首项 和公差, 称作基本量.教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).例:已知等差数列 中中,0,=,该数列的前多少项的和最小?解:设的公差为d,由题意得: 9+9(9-1)d = 12+12(12-1)d, d=-所以0,所以d0又=n+n(n-1)d = -所以d 0, 所以有最小值,又 所以当n=10或n=11时,最小。以上属于对数列的项进行定量的研究,有无定性的判断?3.研究等差数列的单调性 考察 随项数n的变化规律.着重考虑通项 的情况. 此时通项 是n 的一次函数,其单调性取决于d 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号这是为研究等差数列前n项和的最值所做的准备工作.可配备的题目如:(1)已知数列 的通项公式为,问数列从第几项开始小于0?(2)等差数列 从第_项起以后每项均为正数.三.小结1. 用方程思想认识等差数列通项公式;2. 用函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 5 Languages Around the World 主题词汇专项练习(含答案)-2025-2026学年高中英语人教版(2019)必修第一册
- 肾内科血透患者的护理
- 2025年事业单位工勤技能-湖南-湖南广播电视天线工五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北计算机文字录入处理员二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北水工监测工二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-湖北-湖北收银员五级(初级工)历年参考题库典型考点含答案解析
- 2025-2030中国纸浆模塑行业竞争格局与发展规划分析报告
- 2025年事业单位工勤技能-湖北-湖北兽医防治员五级(初级工)历年参考题库典型考点含答案解析
- 2025年农业绿色发展政策与法律法规解读
- 2025年药物研发新方向:创新药物靶点挖掘与验证技术实战分析报告
- 《Gitlab使用流程》课件
- 与供应商的合作与谈判
- IT技术支持与服务响应机制建设指南
- 2024年房县人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 有机合成实验室技安规程(3篇)
- GB/T 5534-2024动植物油脂皂化值的测定
- DBJ52T 096-2019 城市轨道交通土建工程施工质量验收标准
- 《合成孔径雷达原理》课件
- 人教版(2024新版)七年级上册英语Starter Unit1单元测试卷(含答案)
- 全国托育职业技能竞赛理论考试题及答案
- HSK标准教程1-第一课lesson1
评论
0/150
提交评论