【教学设计】《圆周角》(沪科).docx_第1页
【教学设计】《圆周角》(沪科).docx_第2页
【教学设计】《圆周角》(沪科).docx_第3页
【教学设计】《圆周角》(沪科).docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆周角 教材分析学习本节之前同学们已经对圆的基本性质有了一个初步的认识,本节教师主要从另一个角度带学生们进一步了解初中阶段的圆一-圆周角。 教学目标【知识与能力目标】1理解圆周角的概念了解圆周角和圆心角的关系;2理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;3理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径;4掌握圆内接四边形的对角互补;5熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力。 【过程与方法目标】学生主动参与观察、猜测、操作、验证、交流等活动,经历认识新概念的全过程,体验观察、分类、总结的思想和方法。【情感态度价值观目标】体验数学知识与日常生活之间的密切联系,感受学习的乐趣,体会成功的喜悦,从而提高学习兴趣。 教学重难点【教学重点】理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。【教学难点】熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力。 课前准备多媒体、课件等。 教学过程(一)创设情境,激趣引入师:1、复习提问:(1)什么是圆心角?答:顶点在圆心的角叫圆心角.(2)圆心角的度数定理是什么?答:圆心角的度数等于它所对弧的度数.(如右图)2、引题圆周角:如果顶点不在圆心而在圆上,则得到如左图的新的角ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角。(二)探究新知1.圆周角师:观察下列例题,你能发现什么?能总结出什么?如图,在O中,求A的度数。【答案与解析】。(结合答案解析 师生讨论)结合讨论及例题结果总结板书:圆周角定义:像图中AEB、ADB、ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角。圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。2.圆内接四边形师:观察下列例题,你能发现什么?能总结出什么?如图,在O中,求A的度数.【答案与解析】(结合答案解析 师生讨论)结合讨论及例题结果总结板书:圆内接四边形 如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆。 圆内接四边形的对角互补。圆内接四边形的任

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论