




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南京师大附中2014届高三模拟考试数学参考答案及评分标准说明:1本解答给出的解法供参考如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则2对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分3解答右端所注分数,表示考生正确做到这一步应得的累加分数4只给整数分数,填空题不给中间分数一、填空题:本大题共14小题,每小题5分,计70分11; 22; 377; 45; 5; 6必要不充分; 7,0; 8; 94; 10(0,)(5,+); 1124; 12(0,); 137a0或a2; 14 二、解答题:15解析:(1)因为,由正弦定理 得, 2分即=sin(A+C) 4分 因为BAC,所以sinB=sin(A+C),所以因为B(0,),所以sinB0, 所以,因为,所以 7分(2)由(1)知,所以, 8分 设,则,又 在AMC中,由余弦定理 得 即 解得x2. 12分 故 14分16解析: (1)因为PA平面ABCD,CD平面ABCD,所以PACD, 2分 又ACD90,则,而PAACA, 所以CD平面PAC,因为CD平面ACD, 4分所以,平面PAC平面PCD 7分(2) 证法一:取AD中点M,连EM,CM,则EMPA 因为EM 平面PAB,PA平面PAB, 所以EM平面PAB 9分 在RtACD中,AM=CM,所以CAD=ACM,又BACCAD,所以BACACM, 则MCAB因为MC 平面PAB,AB平面PAB, 所以MC平面PAB 12分 而EMMCM,所以平面EMC平面PAB由于EC平面EMC,从而EC平面PAB 14分 证法二:延长DC,AB交于点N,连PN因为NACDAC,ACCD,所以C为ND的中点 而E为PD中点,所以ECPN 因为EC 平面PAB,PN 平面PAB, 所以EC平面PAB 14分17解析:正三棱锥展开如图所示当按照底边包装时体积最大 设正三棱锥侧面的高为h,高为h 由题意得:xh10,解得h10x 2分 则h ,x(0,10) 5分 所以,正三棱锥体积VShx2 8分设yV2(100x), 求导得y ,令y0,得x8, 10分 当x(0,8)时,y0,y随着x的增加而增大, 当x(8,10)时,y0,y随着x的增加而减小, 所以,当x8 cm时,y取得极大值也是最大值 12分 此时y15360,所以Vmax32 cm3 答:当底面边长为8cm时,正三棱锥的最大体积为32cm3 14分18解析: (1)由题设可知a2 1分 因为e,即,所以c 又因为b2a2c2431,所以b1 2分(2)由题设可知,椭圆的方程为y21,直线MN的方程为yx1设M(x1,y1),N(x2,y2),联立方程组,消去y可得5x28x0,解得x10,x2 将x10,x2,代入直线MN的方程,解得y11,y2所以MN 4分设与直线MN平行的直线m方程为yx联立方程组,消去y可得5x28x4240,若直线m与椭圆只有一个交点,则满足64220(424)0,解得 6分当直线m为yx时,直线l与m之间的距离为d1;当直线m为yx时,直线l与m之间的距离为d2; 8分设点C到MN的距离为d,要使CMN的面积为S的点C恰有两个,则需满足d1dd2,即d因为SdMNd,所以S 10分 (3)方法一 设直线A1M的方程为yk1(x2),直线A2N的方程为yk2(x2) 联立方程组,消去y得(14k12)x216k12x16k1240, 解得点M的坐标为(,) 同理,可解得点N的坐标为(,) 12分 由M,D,N三点共线,有,化简得(k23k1)(4k1k21)0 由题设可知k1与k2同号,所以k23k1 14分 联立方程组,解得交点G的坐标为(,) 将k23k1代入点G的横坐标,得xG4 所以,点G恒在定直线x4上 16分 方法二 显然,直线MN的斜率为0时不合题意 设直线MN的方程为xmy1 令m0,解得M(1,),N(1,)或M(1,),N(1,) 当M(1,),N(1,)时,直线A1M的方程为yx,直线A2N的方程为yx 联立方程组,解得交点G的坐标为(4,); 当M(1,),N(1,)时,由对称性可知交点G的坐标为(4,) 若点G恒在一条定直线上,则此定直线必为x4 12分 下面证明对于任意的实数m,直线A1M与直线A2N的交点G均在直线x4上 设M(x1,y1),N(x2,y2),G(4,y0) 由点A1,M,G三点共线,有,即y0 再由点A2,N,G三点共线,有,即y0 所以, 将x1my11,x2my21代入式,化简得2my1y23(y1y2)0 14分 联立方程组,消去x得(m24)y22my30, 从而有y1y2,y1y2 将其代入式,有2m30成立 所以,当m为任意实数时,直线A1M与直线A2N的交点G均在直线x4上 16分19解析:(1)由数列an是等差数列及a1a2a39,得a23, 由数列bn是等比数列及b1b2b327,得b23 2分 设数列an的公差为d,数列bn的公比为q,若m18,则有解得或 所以,an和bn的通项公式为或 4分 由题设b4b3m,得3q23qm,即3q23qm0(*)因为数列bn是唯一的,所以若q=0,则m=0,检验知,当m=0时,q=1或0(舍去),满足题意;若q0,则(3)212 m0,解得m,代入(*)式,解得q,又b23,所以bn是唯一的等比数列,符合题意 所以,m=0或 8分 (2)依题意,36(a1b1) (a3b3), 设bn公比为q,则有36(3d)(3d3q), (*) 记m3d,n3d3q,则mn=36将(*)中的q消去,整理得: d2(mn)d3(mn)360 10分d的大根为 而m,nN*,所以 (m,n)的可能取值为: (1,36),(2,18),(3,12),(4,9),(6,6),(9,4),(12,3),(18,2),(36,1) 所以,当m1,n36时,d的最大值为 16分20解析:(1)当a1时,f (x)(x0), 1分 由f (x)0得:x ;由f (x)0得:0x 2分所以,f(x)的单调增区间为(,),单调减区间为(0,) 3分 (2)当a2时,设切点为M (m,n) f (x)4x3( x0), 所以,切线的斜率k4m3 又直线OM的斜率为 , 5分 所以,4m3,即m2lnm10, 又函数ym2lnm1在(0,)上递增,且m1是一根,所以是唯一根, 所以,切点横坐标为1 7分 (3)a时,由函数yf(x)在其图象上一点P(x0,y0)处的切线方程为: y(x0)(xx0)x02x02ln x0 8分 令h(x)(x0)(xx0)x02x02ln x0, 设F(x)f(x)h(x),则F(x0)0 且F (x)f (x)h (x)x(x0) (xx0)()(xx0) (x) 10分 当0x02时,x0,F(x)在(x0,)上单调递增,从而有F(x)F(x0)0,所以,0; 当x02时,x0,F(x)在(,x0)上单调递增,从而有F(x)F(x0)0,所以,0 因此,yf(x)在(0,2)和(2,)上不存在“巧点” 13分 当x02时, F (x)0,所以函数F(x)在(0,)上单调递减 所以,x2时,F(x)F(2)0,0;0x2时,F(x)F(2)0,0 因此,点(2,f(2)为“巧点”,其横坐标为2 16分南京师大附中2014届高三模拟考试 数学附加题参考答案及评分标准 2014.0521【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分请在答卷纸指定区域内作答解答应写出文字说明、证明过程或演算步骤A选修41:几何证明选讲解析:连接BC,相交于点因为AB是线段CD的垂直平分线,所以AB是圆的直径,ACB90 2分设,则,由射影定理得CEAEEB,又,即有,解得(舍)或 8分所以,ACAEAB5630, 10分B选修42:矩阵与变换解析:由特征值、特征向量定义可知,A,即,得 5分同理可得 解得因此adbc264 10分C选修44:坐标系与参数方程解析:将曲线C1的参数消去可得(x3)2(y4)21 将曲线C2化为直角坐标方程为x2y21 5分 曲线C1是以(3,4)为圆心,1为半径的圆;曲线C2是以(0,0)为圆心,1为半径的圆, 可求得两圆圆心距为5, 所以,AB的最小值为5113 10分D选修45:不等式选讲证明:由a,b,c为正数,根据平均值不等式,得, 将此三式相加,得2(),即 5分 由abc1,则有1 所以, 10分22解析:(1); 3分 (2)的所有取值为0, 1,2,3 4分 ,, 则随机变量的分布列为 3 的数学期望 10分23解析:(1)m100,共有选法种数为12 3分(2)若至少选
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 展台搭建咨询方案
- 咨询公司表格配色方案
- 建筑标识亮化方案设计
- 水暖管道施工环境评估分析报告
- 大连开业活动方案策划招聘
- 建设工程质量管理考核
- 2025版司法局《终止重整程序申请书》民事破产重组类文书(空白模板)
- 学校捐赠活动仪式方案策划
- 在高铁线上的营销方案
- 旅游路线促销活动策划方案
- 第五单元晚清时期的内忧外患与救亡图存(单元复习课件)-高一历史(中外历史纲要上册)
- 眼科常见疾病及其用药
- 脑疝患者的急救及护理
- 2025年农村饮水安全项目社会稳定风险监测与评估报告
- 2024年全市首届档案职业技能竞赛考试题库(含答案)
- 2025至2030中国无线电频率行业发展趋势分析与未来投资战略咨询研究报告
- 五自教育课件
- 比亚迪汽车车间管理制度
- 《烽火岁月中的木刻》教学课件-2024-2025学年浙人美版(2024)初中美术七年级上册
- 分析包容型领导风格对团队绩效和员工创新绩效的作用
- T/CCS 071-2023井工煤矿智能化带式输送机运维管理规范
评论
0/150
提交评论