如图已知抛物线y= x2+bx+c与坐标轴交于A、B、C三点 A点.doc_第1页
如图已知抛物线y= x2+bx+c与坐标轴交于A、B、C三点 A点.doc_第2页
如图已知抛物线y= x2+bx+c与坐标轴交于A、B、C三点 A点.doc_第3页
如图已知抛物线y= x2+bx+c与坐标轴交于A、B、C三点 A点.doc_第4页
如图已知抛物线y= x2+bx+c与坐标轴交于A、B、C三点 A点.doc_第5页
免费预览已结束,剩余10页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【081】如图,已知抛物线yx2bxc与坐标轴交于A、B、C三点, A点的坐标为(1,0),过点C的直线yx3与x轴交于点Q,点P是线段BC上的一个动点,过P作PHOB于点H若PB5t,且0t1(1)填空:点C的坐标是_,b_,c_;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与COQ相似?若存在,求出所有t的值;若不存在,说明理由【082】CMOxy1234图7A1BD(09上海)在直角坐标平面内,为原点,点的坐标为,点的坐标为,直线轴(如图7所示)点与点关于原点对称,直线(为常数)经过点,且与直线相交于点,联结(1)求的值和点的坐标;(2)设点在轴的正半轴上,若是等腰三角形,求点的坐标;(3)在(2)的条件下,如果以为半径的圆与圆外切,求圆的半径【083】如图,在直角坐标系中,点A的坐标为(2,0),连结OA,将线段OA绕原点O顺时针旋转120,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么PAB是否有最大面积?若有,求出此时P点的坐标及PAB的最大面积;若没有,请说明理由BAOyx【084】如图,在平面直角坐标系中,直线l:y=2x8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作P.(1)连结PA,若PA=PB,试判断P与x轴的位置关系,并说明理由;(2)当k为何值时,以P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 【085】如图, 已知抛物线(a0)与轴交于点A(1,0)和点B (3,0),与y轴交于点C(1) 求抛物线的解析式;(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由(3) 如图,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标【086】如图,以BC为直径的O交CFB的边CF于点A,BM平分ABC交AC于点M,ADBC于点D,AD交BM于点N,MEBC于点E,AB2=AFAC,cosABD=,AD=12求证:ANMENM;求证:FB是O的切线;证明四边形AMEN是菱形,并求该菱形的面积S【087】如图,已知抛物线yx2bxc经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB4(1)求抛物线的解析式;(2)若SAPO,求矩形ABCD的面积ABCDyPxO(第23题图)【088】如图所示,已知在直角梯形中,轴于点动点从点出发,沿轴正方向以每秒1个单位长度的速度移动过点作垂直于直线,垂足为设点移动的时间为秒(),与直角梯形重叠部分的面积为(1)求经过三点的抛物线解析式;(2)求与的函数关系式;(3)将绕着点顺时针旋转,是否存在,使得的顶点或在抛物线上?若存在,直接写出的值;若不存在,请说明理由2OABCxy113P第26题图Q【089】如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点(1)求抛物线的解析式;(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长OxyNCDEFBMA(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由【090】如图(9)-1,抛物线经过A(,0),C(3,)两点,与轴交于点D,与轴交于另一点B(1)求此抛物线的解析式;(2)若直线将四边形ABCD面积二等分,求的值;(3)如图(9)-2,过点E(1,1)作EF轴于点F,将AEF绕平面内某点旋转180得MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,作MG轴于点G,若线段MGAG12,求点M,N的坐标DOBAxyCy=kx+1图(9)-1EFMNGOBAxy图(9)-2Q参考答案【081】解:(1)(0,3),b,c33分(2)由(1),得yx2x3,它与x轴交于A,B两点,得B(4,0)OB4,又OC3,BC5由题意,得BHPBOC,OCOBBC345,HPHBBP345,PB5t,HB4t,HP3tOHOBHB44t由yx3与x轴交于点Q,得Q(4t,0)OQ4t4分当H在Q、B之间时,QHOHOQ(44t)4t48t5分当H在O、Q之间时,QHOQOH4t(44t)8t46分综合,得QH48t;6分(3)存在t的值,使以P、H、Q为顶点的三角形与COQ相似7分当H在Q、B之间时,QH48t,若QHPCOQ,则QHCOHPOQ,得,t7分若PHQCOQ,则PHCOHQOQ,得,即t22t10t11,t21(舍去)8分当H在O、Q之间时,QH8t4若QHPCOQ,则QHCOHPOQ,得,t9分若PHQCOQ,则PHCOHQOQ,得,即t22t10t1t21(舍去)10分综上所述,存在的值,t11,t2,t310分附加题:解:(1)8;5分(2)210分【082】(09上海)略【083】. 解:(1)B(1,)(2)设抛物线的解析式为y=ax(x+a),代入点B(1, ),得,因此(3)如图,抛物线的对称轴是直线x=1,当点C位于对称轴与线段AB的交点时,BOC的周长最小.CBAOyx设直线AB为y=kx+b.所以,因此直线AB为,当x=1时,因此点C的坐标为(1,).DBAOyxP(4)如图,过P作y轴的平行线交AB于D. 当x=时,PAB的面积的最大值为,此时.【084】解:(1)P与x轴相切. 直线y=2x8与x轴交于A(4,0),与y轴交于B(0,8),OA=4,OB=8.由题意,OP=k,PB=PA=8+k.在RtAOP中,k2+42=(8+k)2,k=3,OP等于P的半径,P与x轴相切.(2)设P与直线l交于C,D两点,连结PC,PD当圆心P在线段OB上时,作PECD于E.PCD为正三角形,DE=CD=,PD=3, PE=.AOB=PEB=90, ABO=PBE,AOBPEB,.当圆心P在线段OB延长线上时,同理可得P(0,8),k=8,当k=8或k=8时,以P与直线l的两个交点和圆心P为顶点的三角形是正三角形.【085】解: (1)由题知: 1 分 解得: 2分 所求抛物线解析式为: 3分 (2) 存在符合条件的点P, 其坐标为P (1, )或P(1, )或P (1, 6) 或P (1, )7分(3)解法:过点E 作EFx 轴于点F , 设E ( a ,-2a3 )( 3 a 0 ) EF=-2a3,BF=a3,OF=a 8 分S四边形BOCE = BFEF + (OC +EF)OF =( a3 )(2a3) + (2a6)(a)9 分=10 分=+ 当a =时,S四边形BOCE 最大, 且最大值为 11 分 此时,点E 坐标为 (,)12分解法:过点E 作EFx 轴于点F, 设E ( x , y ) ( 3 x 0 ) 8分则S四边形BOCE = (3 + y )(x) + ( 3 + x )y 9分 = ( yx)= ( ) 10 分 = + 当x =时,S四边形BOCE 最大,且最大值为 11分此时,点E 坐标为 (,) 12分【086】证明:BC是O的直径BAC=90o又EMBC,BM平分ABC,AM=ME,AMN=EMN又MN=MN,ANMENMAB2=AFAC又BAC=FAB=90oABFACBABF=C又FBC=ABC+FBA=90oFB是O的切线由得AN=EN,AM=EM,AMN=EMN,又ANME,ANM=EMN,AMN=ANM,AN=AM,AM=ME=EN=AN四边形AMEN是菱形cosABD=,ADB=90o设BD=3x,则AB=5x,由勾股定理而AD=12,x=3BD=9,AB=15MB平分AME,BE=AB=15DE=BE-BD=6NDME,BND=BME,又NBD=MBEBNDBME,则设ME=x,则ND=12-x,解得x=S=MEDE=6=45【087】(天门)略【088】解:(1)法一:由图象可知:抛物线经过原点,设抛物线解析式为把,代入上式得:1分解得3分所求抛物线解析式为4分法二:,抛物线的对称轴是直线设抛物线解析式为()1分把,代入得 解得3分所求抛物线解析式为4分(2)分三种情况:当,重叠部分的面积是,过点作轴于点,2OABCxy113P第26题图1QF,在中,在中,2OABCxy113第26题图2QFGPH6分当,设交于点,作轴于点,则四边形是等腰梯形,重叠部分的面积是,8分当,设与交于点,交于点,重叠部分的面积是2OABCxy113第26题图3QFMPN因为和都是等腰直角三角形,所以重叠部分的面积是, 10分(3)存在 12分 14分【089】解:(1)圆心在坐标原点,圆的半径为1,点的坐标分别为抛物线与直线交于点,且分别与圆相切于点和点,2分点在抛物线上,将的坐标代入,得: 解之,得:抛物线的解析式为:4分(2)抛物线的对称轴为,OxyNCDEFBMAP6分连结,又,8分(3)点在抛物线上9分设过点的直线为:,将点的坐标代入,得:,直线为:10分过点作圆的切线与轴平行,点的纵坐标为,将代入,得:点的坐标为,11分当时,所以,点在抛物线上12分说明:解答题各小题中只给出了1种解法,其它解法只要步骤合理、解答正确均应得到相应的分数【090】(1)解:把A(,0),C(3,)代入抛物线 得 1分 整理得 2分 解得3分 抛物线的解析式为 4分 (2)令 解得 B点坐标为(4,0) 又D点坐标为(0,)ABCD 四边形ABCD是梯形DOBAxyCBCy=kx+1图(9) -1HT

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论