


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用三边比例关系判定三角形相似【知识与技能】1. 初步掌握“三组对应边的比相等的两个三角形相似”的判定方法.2. 能运用它们解决具体问题.【过程与方法】经历从实验探究到归纳证明的过程,发展学生的合理推理能力.【情感态度】培养学生的观察、动手探究、归纳总结能力,形成推理、说明的科学态度.【教学重点】两个三角形相似的判定定理及其应用.【教学难点】准确运用判定定理来判定三角形是否相似.一、情境导入,初步认识问题 判定两个三角形全等我们有SSS的方法,类似地,判定两个三角形相似是否也有类似的简单方法呢?【教学说明】设置疑问,引导学生思考,尝试用类似的思路来判定两个三角形相似,激发求知欲望.二、思考探究,获取新知问题1 任意画一个三角形,再画另一个三角形,使它的各边长都是原来各边长的2倍,度量这两个三角形的对应角,他们对应相等吗?这两个三角形全等吗?21思考1 如图,在ABC和ABC中,,则 ABC与ABC相似吗?为什么?【教学说明】“问题1”可让学生自主完成, 并相互交流,获得“一个三角形的三条边与另一个三角形的三条边的比相等时,这样的两个三角形相似”的感性认识.而对于“思考1”中的问题,教师应引导学生通过合理推理进行说明.这时可在AB上截取AD=AB,再过D作DE/BC,由ADEABC,再证明ABCADE,则可得到ABCABC.这种构造ADE作为过渡三角形在以往的学习中很少见,因此教师应做好引导.21世纪教育网版权所有相似三角形的判定定理1 如果两个三角形的三组对应边的比相等,那么这两个三角形相似.三、典例精析,掌握新知例1 教材P33中例1【教学说明】教师可让学生自主完成,让学生从中体验成功的喜悦.对于(2)题,还可让学生说出他们的相似比是多少;对于(1)题,应引导学生用小边比小边,中边比中边,大边比大边的比值进行说明,不能出现混乱.进一步地,若要使得两个三角形相似,可改变其中一条线段的长,让学生试试看.例2 如图,四边形ABCD中,B =ACD,AB = 6,BC=4,AC=5,CD=7.5,你能求出线段AD的长吗?说说你的理由.21cnjycom【教学说明】可让学生独立完成试试看,也可以相互交流,共同探讨解题思路,然后予以评析,巩固本节所学知识.四、运用新知,深化理解1.AB=10cm,BC=8cm,AC=16cm,AB= 16cm,BC=12.8cm,AC= 25.6cm.2.图中的两个三角形是否相似?3.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4,5,6,另一个三角形框架的一边长为2,它的另外两条边长应当是多少?你有几种答案?21cnjy【教学说明】 1、2题让学生独立完成,第3题可集体评讲(在学生思考后),注重于分类思想.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【来源:21世纪教育网】五、师生互动,课堂小结1.与同伴交流论证判定定理1、2中的证明方法,谈谈你的认识;2.判定定理2中“夹角相等”这个条件是否可换成“一角对应相等”,说说你的理由.1.布置作业:从教材P4244习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时教学可采用类比的方法进行,一方面可类比两个三角形全等的判定方法,另一方面可类比上一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 炎症后色素沉着防治专家共识
- 现代英语礼貌用语解读:人际交往语言技能培养教学教案
- 去甲醛健康安全知识培训课件
- 2025电梯广告牌制作合同范本
- 2025【合同范本】上海市房屋买卖合同样本
- 厦门质量安全培训课件
- 2025年北京租房合同模板下载「标准版」
- 厦门安全体系培训课件
- 2025合同样本:城乡务工人员劳动合同书
- 大面积脑梗课件
- 联邦学习在二零二五年保险精算模型跨机构协作中的实践
- 招投标技术服务及售后承诺书
- 《推销实务》中职全套教学课件
- 销售激励方案奖罚制度(3篇)
- 2025-2026年秋季学期各周国旗下讲话安排表+2025-2026学年上学期升旗仪式演讲主题安排表
- GB/T 45875-2025精细陶瓷自然烧结条件下陶瓷粉体致密性的测定
- 鼾症的治疗与护理
- 中药足浴课件
- 新解读《水文资料整编规范 SL-T 247-2020》解读
- 超声科规培生入科教育大纲
- 脑疝的观察与护理
评论
0/150
提交评论