




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.1.2三角形的内角和与外角和(1)教学设计德惠市第二十九中学 曲静一、内容和内容解析这是一节定理证明教学课,主要学习三角形内角和定理及其证明,以及利用定理解决简单的角度计算问题。本节的核心内容为三角形内角和定理的证明,同时这也是本节课的教学重点。教材中本节课的内容可以称之为核心内容,关键是它的地位举足轻重,在知识的学习中起到了承上启下的作用。在这之前学生已经学过平行线的性质、平角定义,为这节课中三角形内角和定理的证明起了铺垫的作用,而这节课也为后面学习的多边形内角和及三角形全等的推理证明起了一定的奠基作用。本节课定理的证明过程为学生建立数学思想方法和逻辑推理能力提供了一个发展提高的平台,其论证过程总体体现为化归思想。本课的基本定位在于,通过三角形内角和定理证明的教学实践,感受几何证明的思想,体会辅助线在几何问题解决中的桥梁作用。同时,引领学生体会数学中的重要思想数形结合。最后,进一步体会辅助线添加方法的多样性,渗透“最优化”思想。二、目标和目标解析目标:【知识技能】掌握三角形内角和定理的证明及简单应用。【数学思考】1、通过分析、对比,感受三角形内角和定理证明的必要性;2、通过对三角形内角和定理的证明,初步体会几何定理学习的方法;3、能独立思考,体会化归思想、数形结合思想、最优化思想。【问题解决】1、通过探究实验,寻求辅助线的做法及证明方法的多样性,培养创新思维;2、在与他人的合作与交流过程中,能较好地理解他人的思考方法。【情感态度】经历三角形内角和定理不同方法的推理证明过程,培养学生创造性,弘扬个性发展,体验解决问题的成就感,体会数学证明的严谨性和推理意义,培养学习数学的兴趣,感悟逻辑推理的数学价值。目标解析:学生经历“实验猜想证明”的过程,掌握三角形内角和定理的证明方法,同时感受证法的灵活性与多样性。在探究实验中学生通过动手操作不仅得到了多种辅助线的添加方法而且为证明提供了思路。在教学过程中学生不但能感受探索三角形内角和定理的证明过程,还能培养有条理的思考问题和表达问题的能力,通过渗透化归的数学思想,培养学生解决问题的基本方法。三、学生学情分析【学生已有知识结构】 “三角形的内角和等于180度”,这一结论在小学三角形的知识学习中,学生通过动手操作已经得出,而在七年级上学期学生已经学习了平行线的性质与判定、平角的知识,初步感受了几何推理的结构,本节课是在此基础上,进一步地了解这个结论成立的道理。同时引导学生回忆与180有关的知识,想办法将三角形的三个角拼成一个平角或同旁内角的形式,再利用所学的知识证明三角形内角定理,启发学生正确添加辅助线并证明。 【学生学习的困难】学生知道“三角形的内角和等于180度”是正确的,至于为什么是正确的,只能从撕纸拼图或测量角度解答。而对于任意三角形的多样性、复杂性估计不足,至于利用这个结论去解决其他问题时的可靠性则不清楚,这就是学生学习这个定理证明时必然要碰到的第一个困难;如何获取证明的思路,如何引导学生利用所学知识将三角形的三个角拼在一起,正确添加辅助线是学生在学习中的第二个困难。第一个难点学生通过教师讲解可以突破,第二个的难点突破则需要以探究实验为载体,通过学生的动手操作,充分借助实物图形的直观性来发现问题,从而对问题产生猜想,找到解决问题的方法。四、教学策略分析现代教学理论认为,在教学过程中,学生是学习的主体,教学的一切活动都以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我采用启发式、讨论式以及小组合作交流的教学方法,倡导学生主动参加教学实践活动,以独立思考和相互交流的形式,给学生以足够的时间和空间去猜想、探究,从而真正理解三角形的内角和结论。由于这个定理的证明是课本第一次出现的几何证明,学生如何获得证明思路,如何合理添加辅助线解决问题是本节课教学中的难点。本节课的教学重点是三角形内角和定理的证明,在探索定理证明的过程中重视在思路和方法上对学生的引导,帮助学生分析添加辅助线在三角形内角和定理证明中的实质作用。在教学中引导学生探索证明的不同方法,提倡证法的多样性,并引导学生比较证法的异同,提高逻辑思维水平,为学生创造一次很好的思维开创机会。五、教学过程(一)、学生回忆,引出课题问题1:复习平行线的性质【设计意图】通过复习相交线与平行线的相关知识,为本节课学生顺利学习三角形内角和定理及证明做好准备。(二)、探究实验,寻找思路问题2:小学学习的三角形三个内角的和等于,是如何证明的?【设计意图】通过回忆小学时结论的得出,进行分析、对比,感受证明的必要性。教师引导学生将命题进行图形语言、符号语言的转化,为定理的证明做准备。问题3:我们已经学习的与“”有关的知识有哪些?【设计意图】从这里入手为探究实验的操作指明方向,同时从“数”的方面引导学生探索定理的证明思路,逐步渗透“化归”的数学思想。探究活动把准备好的三角形拿出来,并将它的内角剪下,试着拼拼看,三个内角的和是否为?有几种拼法?拼完后与小组成员交流,比一比看哪组的拼法最多。【设计意图】探究实验一方面可以激发学生的兴趣,另一方面为证明从“形”的方面提供思路。从拼合的图形中学生不但能直观的看出辅助线与边的关系,还能寻找出严密的逻辑证明方法,从而为证明的引出打下伏笔。同时,学生在合作交流的过程中开阔了思维,锻炼了动手能力、严密的推理能力以及语言表达能力,增强了合作意识。师生活动:让学生每人提前准备几个硬纸剪的三角形,并把角剪下来,拼在一起,让他们自己得出结论。学生可以展示不同的拼法: ( 1) (2)(三)活用化归,证明定理问题4:证明三角形内角和定理:三角形的三个内角和等于;已知:如图2,.求证:A+B+C= 教师引导学生对拼合的图形进行分析,得出辅助线的做法及证明的思路。【设计意图】教师指导学生从不同角度思考,展示证法的多样性。通过定理的证明使学生感受几何证明的思想,体会辅助线添加方法的多样性以及在几何问题解决中的桥梁作用,渗透“最优化”思想。师生活动:学生自主探索,教师一边巡视,一边指学习有困难的学生,根据学生完成的情况,然后由学生展示自己的探索结果,教师补充。证法一: (利用平角):过点A作直线mBC, BC 1=B,2=C(两直线平行,内错角相等) 1,3,2组成平角 1+3+2=180? (平角定义) B+3+C=180? (等量代换)师:这里可以看出,证明就是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.证法二:(利用平角):如图,延长BC到点D,过点C作CEAB CEAB 2=A, (两直线平行,内错角相等) 1=B. (两直线平行,同位角相等)又根据平角定义, 1+2+3=180? A+B+3=180?(等量代换)师:刚才同学们采用搬动两个角使得三角形的三个内角化为成一个平角的方法来证明,请问还有哪一位同学的方法与刚才的方法不相同?能否只搬动一个角?证法三:(利用两直线平行,同旁内角互补)过顶点C作CDBA,则1A(两直线平行,内错角相等)CDBA1+ACB+B180(两直线平行,同旁内角互补)A+ACB+B180师:大家做的非常好,前三种方法都是通过做平行线,利用平行线的性质,把角转移到三角形的一个顶点处。只要把它们拼到一起成为平角就可以了,那么能不能转移到其它地方呢?证法四:(利用平角)过内任一点p作EDAC,MNAB,FGBDEAC,MNAB,FGBC1=6=C3=4=B2=5=A2+6+3=1800A+B+C=1800证法五:(利用平角)在BC上任取一点D,过点D作DEAB交AC于E,再过点D作DFAC交AB于FDEAB,DFACEDC=B,A=BFD=FDE,FDB=C。BDF+FDE+EDC=1800,A+B+C=1800。证法六:(利用平角180?)在外任取一点p,过点P作DMBC,GHAC,EFABDMBC,GHAC,EFABB=EPMA=FPHC=GPD=MPHEPM+MPH+FPH=1800ABC+C+BAC=1800教师引导学生对证明方法进行对比、分析,达到优化的目的。(四)、反馈练习,小试牛刀1. 求下列各图形中角的度数:【设计意图】让学生通过计算,巩固三角形内角和定理,并明确在不同三角形中已知两个角,可以求出第三个角。2、在直角三角形中,C是直角,则A与B的和是多少?由此题得出结论:直角三角形的两个锐角互余。 3.已知:三角形三个内角的度数之比为1:3:5,求这三个内角的度数。【设计意图】从“数”的角度考察三角形内角和定理,培养学生的推理能力和有条理的表达能力。练习:1、在ABC中,(1)C=90,A=30 ,则B=;(2)A=50 ,B=C,则B=; (3)B =800,A =3C,则A =。 2、在中, :则, 3、选择题(1) 在ABC中,A:B:C =1:2:3,则B =( ) A. 300 B. 600 C. 900 D. 1200 (2) 在ABC中,A =500, B =800,则C =( ) A. 400 B. 500 C. 100 D. 1100 (3)在ABC中,A =800, B =C,则B =( ) A. 500 B. 400 C. 100 D. 450 (4)、如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是 ( ) (A)带去(B)带去(C)带去(D)带和去 4、在中,如果= B= C,那么是什么三角形?5、 已知:在ABC中,C=ABC=2A,BD是AC边上的高, 求DBC的度数. 6、 在ABC中,已知A-C=250,B-A=100,求B的度数. 7、如图:已知在ABC中,EF与AC交于点G,与BC的延长线交于点F,B=450 ,F=300,CGF=700, 求A的度数. (五)、归纳小结,布置作业课堂小结:今天我们学习了什么内容?你有什么收获?让我们分享吧!【设计意图】通过总结回忆,使学生加深对三角形内角和定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省嘉兴市嘉善高级中学2026届高二化学第一学期期中考试试题含解析
- 2026届湖北省随州市第二高级中学、郧阳中学化学高二第一学期期末统考模拟试题含答案
- 桡骨中段骨折护理查房课件
- 2025年能源资源管理与可持续发展试卷及答案
- 2025年注册验船师资格考试(C级船舶检验专业基础安全)综合能力测试题及答案二
- 2025年注册验船师资格考试(A级船舶检验法律法规)综合能力测试题及答案一
- 2025年钢琴学习教程与曲目练习指南
- 2025年企业运营管理能力提升课程试题集及解析
- 2025年9月遗传生殖门诊护理理论考试题及答案
- 北京市门头沟区2023-2024学年七年级上学期期末质量监测数学考试题目及答案
- 2025-2030中国城市更新政策演变与实施路径专项调研报告
- 儿科川崎病课件
- 2025年书记员考试题库(附答案)
- 中成药合理使用培训课件
- 建筑材料绿色采购实施方案
- 学堂在线 劳动教育 章节测试答案
- 2025-2031年中国AI成人娃娃行业市场发展规模及投资机会研判报告
- 2025至2030中国个人定位信标(PLB)行业产业运行态势及投资规划深度研究报告
- 2025年振兴中学分班考试题及答案
- 肿瘤防治宣传科课件
- 2025年军队文职人员招聘考试(公共科目)测试题及答案一
评论
0/150
提交评论