


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数公式大全两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinACosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tanatan(+a)tan(-a)半角公式sin()=cos()=tan()=cot()= tan()=和差化积 sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=积化和差 sinasinb = -cos(a+b)-cos(a-b)cosacosb = cos(a+b)+cos(a-b)sinacosb = sin(a+b)+sin(a-b)cosasinb = sin(a+b)-sin(a-b)诱导公式 sin(-a) = -sinacos(-a) = cosasin(-a) = cosacos(-a) = sinasin(+a) = cosacos(+a) = -sinasin(-a) = sinacos(-a) = -cosasin(+a) = -sinacos(+a) = -cosatgA=tanA =万能公式sina=cosa=tana=其他非重点三角函数csc(a) = sec(a) =双曲函数sinh(a)=cosh(a)=tg h(a)=其它公式asina+bcosa=sin(a+c) 其中tanc=asin(a)-bcos(a) = cos(a-c) 其中tan(c)=1+sin(a) =(sin+cos)21- sin(a) = (sin-cos)22-公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k)= sin cos(2k)= cos tan(2k)= tan cot(2k)= cot 公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系: sin()= -sin cos()= -cos tan()= tan cot()= cot 公式三: 任意角与 -的三角函数值之间的关系: sin(-)= -sin cos(-)= cos tan(-)= -tan cot(-)= -cot 公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系: sin(-)= sin cos(-)= -cos tan(-)= -tan cot(-)= -cot 公式五: 利用公式-和公式三可以得到2-与的三角函数值之间的关系: sin(2-)= -sin cos(2-)= cos tan(2-)= -tan cot(2-)= -cot 公式六: 及与的三角函数值之间的关系: sin(+)= cos cos(+)= -sin tan(+)= -cot cot(+)= -tan sin(-)= cos cos(-)= sin tan(-)= cot cot(-)= tan sin(+)= -cos cos(+)= sin tan(+)= -cot cot(+)= -tan sin(-)= -cos cos(-)= -sin tan(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惠州消防知识培训班课件地址
- 情绪世界课件
- 情感升华课件
- 销售管理工作方案
- 恶性心律失常的识别课件
- “绿化环境,播种绿色”植树节活动方案
- 老年趣味运动会活动策划方案
- 孤儿学校初中语文随班就读的工作方案
- 护士理论考试题及答案
- 扬州电动车考试试题及答案
- 【《惠东农商银行个人信贷业务发展现状及存在的问题和策略分析》15000字】
- 光伏项目开发培训课件
- 职业年金政策讲解
- 智联猎头企业薪酬调研白皮书-2025年年中盘点
- 基孔肯雅热、登革热等重点虫媒传染病防控技术试题
- 消防设施操作员(监控方向)中级模拟考试题及答案
- 2025年事业单位教师考试公共基础知识试题(含答案)
- 2025年可靠性工程师MTBF计算强化练习
- 2025秋季学期中小学学校学生校服采购工作方案
- 乳房肿块鉴别诊断
- 普速铁路信号维护规则业务管理
评论
0/150
提交评论