3.2正方形的判定.docx_第1页
3.2正方形的判定.docx_第2页
3.2正方形的判定.docx_第3页
3.2正方形的判定.docx_第4页
3.2正方形的判定.docx_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九年级数学教学设计课 题正方形的性质与判定(2)课 时1课时主备教师陈芳教研时间9月14日任课教师教学时间9月18日 教学目标 知识与技能: 1、掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题。 2、发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明,进一步发展学生演绎推理的能力。过程与方法:1、 经历“探索发现猜想证明”的过程,掌握正方形的判定定理,发现决定中点四边形形状的因素,并能综合运用特殊四边形的性质和判定解决问题。2、 通过凸四边形的中点四边形的探求过程,以及引申至凹四边形的中点四边形的探求过程,引导学生体会证明过程中所运用的由一般到特殊再到一般的归纳、类比、转化的思想方法等,培养积极探索、勇于创新的精神,以及推陈出新的创新能力。情感态度价值观: 通过师生互动、合作交流以及多媒体软件的使用,进一步发展学生合作交流的能力和数学表达能力,并使学生发现数学中蕴涵的美,激发学生学习的自觉性、积极性,提高学习数学的兴趣。教学重点掌握正方形的判定定理,发现决定中点四边形形状的因素并熟练运用特殊四边形的判定及性质对中点四边形进行判断和证明教学难点能综合运用特殊四边形的性质和判定解决问题,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明教具使用刻度尺.教学方法观察法、探究、讨论法. 教 学 过 程 教师活动学生活动备注第一环节:情景引入将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?第二环节:新课学习引导学生总结出正方形的判定定理:1.对角线相等的菱形是正方形。2.对角线垂直的矩形是正方形。3.有一个角是直角的菱形是正方形。教师课件展示下面的框架图,复习巩固平行四边形、矩形、菱形、正方形之间的关系。 教师总结: 由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件相应可作变化,在应用时要仔细辨别后才可以作出判断。第三环节:运用巩固活动内容:教师引导学生分析证明思路,强调注意事项:FECABCGHFEDABCGHFEDAB此环节采用合作学习的策略,鼓励学生多层面、多角度地思考正方形判定的运用,目的在于加深学生对判定本身的理解和掌握,同时也丰富了交流的内容,激发了交流的气氛,使新旧知识融会贯通,达到同学间的沟通、互补、共同提高的目的,教师应对学生的合理讲解给予肯定和鼓励。而且整个过程也使学生重新回顾了证明的步骤,为进一步发展学生的演绎推理能力奠定了基础。第四环节:猜想结论,分组验证活动内容1: 问题:1.如图,在ABC中,EF为ABC的中位线,若BEF=30,则A= . 若EF=8cm, 则AC= . 2.在AC的下方找一点D,做CD和AD的中点G、H,问EF和GH有怎样的关系?EH和FG呢?3.四边形EFGH的形状有什么特征?活动的注意事项:教师在提问时选择平时学习数学有困难的学生,由于是前面已经学过的知识,学生们回答得很流畅,这种低起点的问题,也增强了学生学习数学的自信心。此外,课件的运用,直观形象,也分解了难点。活动内容2:问题:如果四边形ABCD变为特殊的四边形,中点四边形EFGH会有怎样的变化呢?活动的注意事项:有的学生猜测还是平行四边形,有的学生猜测是正方形,有的学生猜测是矩形,有的学生猜测是菱形,甚至有的学生猜测是梯形。经过师生的共同探讨,达成一致的结论:一定是平行四边形,而非梯形。于是老师顺势提出问题“会不会是特殊的平行四边形呢?从结论来探索有一些困难,那么我们可以换一种角度思考:四边形ABCD可以为哪些特殊的四边形?”学生的回答多种多样,原四边形可以为平行四边形、矩形、菱形、正方形、等腰梯形,甚至还有学生回答为梯形和直角梯形。于是老师请学生选择一种自己感兴趣的原四边形来研究中点四边形,从而顺利进入下一环节。活动内容3:学生以数学小组的形式,在众多的特殊四边形(平行四边形,矩形,菱形,正方形,等腰梯形,梯形和直角梯形)中选择一种自己感兴趣的原四边形来研究中点四边形,并验证结论的正确性。活动的注意事项:学生结合前面学过的各种特殊四边形的判定与性质、三角形中位线定理等知识,人人参与、积极进行探究和交流,通过类比和转化共归纳出以下几种情况。,讲解中小组之间互相补充、互相竞争,气氛热烈,使验证的过程更加严谨。把学习的主动权交给了学生,真正体现了学生的自主性,也激发了学生学习数学的兴趣。得出结论:平行四边形的中点四边形是平行四边形;矩形的中点四边形是菱形;菱形的中点四边形是矩形;正方形的中点四边形是正方形;等腰梯形的中点四边形是菱形;直角梯形的中点四边形是平行四边形;梯形的中点四边形是平行四边形。活动内容4:问题:1.矩形和等腰梯形是形状不同的四边形,为什么中点四边形都由平行四边形变化为菱形?2.平行四边形变化为菱形需要增加什么条件?3.你是从什么角度考虑的?4.你从哪儿得到的启发?5.你能用你的发现解释其它的图形变化吗?例如:原四边形为菱形,其中点四边形为矩形?活动的注意事项:这一环节紧紧围绕“中点四边形”再次提出问题串,是对上一活动的拓展。通过问题串的解答,使学生对决定中点四边形形状的因素更加明了。教师引导学生对研究的问题归纳总结。第五环节:课堂小结活动内容:1本节课重点学习了什么知识,应用了哪些数学思想和方法?2通过本节课的学习你有哪些收获?在今后的学习过程中应该怎么做?活动的注意事项:学生们畅所欲言自己的收获,比如:有的学生说:通过这节课我掌握了正方形的判定定理,知道了中点四边形的形状与原四边形对角线有关;有的学生说:通过这节课我了解了类比、转化和归纳概括的数学思想,我要把这些运用到平日的学习和生活中;还有的学生说:通过这节课我发现了数学的美,我更加喜欢数学了;老师对学生的回答给予充分的肯定和鼓励。第六环节:布置作业.习题1.8(1、3)学生动手折叠、思考、剪切同学到讲台前讲解自己的做法和判断依据学生根据此框架图口述正方形的判别条件:先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形。学生小组探究讨论,代表发言各小组派代表展示自己小组的猜想和验证 学生画图说明.学生概括出规律:决定中点四边形EFGH的形状的主要因素是原四边形ABCD的对角线的长度和位置关系。(1) 若对角线相等,则中点四边形EFGH为菱形;(2) 若对角线互相垂直,则中点四边形EFGH为矩形;(3) 若对角线既相等,又垂直,则中点四边形EFGH为正方形;(4) 若对角线既不相等,又不垂直,则中点四边形EFGH为平行四边形。通过例2,复习巩固平行四边形、菱形、矩形、正方形的性质与判定定理,让学生尝试综合运用特殊四边形的性质和判定解决问题。 通过问题串,复习三角形中位线性质定理和命题“依次连接任意四边形各边的中点可以得到一个平行四边形”。在一个开放的情景中,引导学生体会由一般到特殊的归纳、类比、转化的思想方法,同时培养学生的积极探索、勇于创新的精神。由学生非常熟悉的、常见的特殊四边形得到结论,为后面的知识形成作好铺垫,并把学习的主动权让给学生,目的在于激发学生的学习兴趣,使学生真正成为学习的主人;同时让学生再一次体会由一般到特殊的归纳思想、类比、转化的思想方法,进一步提高学生的合作交流和数学表达能力。 让学生体会由一般到特殊再到一般的归纳思想方法,进一步提高学生的数学表达能力。这里让学生通过归纳,学会把

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论