




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题四 分类讨论思想方法在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。引起分类讨论的原因主要是以下几个方面: 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a0、a0、a2时分a0、a0和a0三种情况讨论。这称为含参型。另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。例题例1已知集合A和集合B各含有12个元素,AB含有4个元素,试求同时满足下面两个条件的集合C的个数: . CAB且C中含有3个元素; . CA 。【分析】 由已知并结合集合的概念,C中的元素分两类:属于A 元素;不属于A而属于B的元素。并由含A中元素的个数1、2、3,而将取法分三种。【解】 CCCCCC1084另一种解题思路是直接使用“排除法”,即CC1084。例2. 设0x0且a1,比较|log(1x)|与|log(1x)|的大小。【分析】 比较对数大小,运用对数函数的单调性,而单调性与底数a有关,所以对底数a分两类情况进行讨论。【解】 0x1 01x1 当0a0,log(1x)0; 当a1时,log(1x)0,所以|log(1x)|log(1x)|log(1x) log(1x)log(1x)0;由、可知,|log(1x)|log(1x)|。例3. 设a是由正数组成的等比数列,S是前n项和。 . 证明: 0,使得lg(Sc)成立?并证明结论。【解】 设a的公比q,则a0,q0 当q1时,Sna,从而SSSna(n2)a(n1)aa0; 当q1时,S,从而SSSaq0;由上可得SSS,所以lg(SS)lg(S),即lgS。. 要使lg(Sc)成立,则必有(Sc)(Sc)(Sc),分两种情况讨论如下:当q1时,Sna,则(Sc)(Sc)(Sc)(nac)(n2)ac(n1)aca0当q1时,S,则(Sc)(Sc)(Sc)c ccaqac(1q) aq0 ac(1q)0即c而ScS0, 使得lg(Sc)成立。例4. 设函数f(x)ax2x2,对于满足1x0,求实数a的取值范围。 1 4 x 1 4 x【分析】 含参数的一元二次函数在有界区间上的最大值、最小值等值域问题,需要先对开口方向讨论,再对其抛物线对称轴的位置与闭区间的关系进行分类讨论,最后综合得解。【解】当a0时,f(x)a(x)2 或或 a1或a;当a 。例5. 解不等式0 (a为常数,a)【解】 2a10时,a; 4a0 。 所以分以下四种情况讨论:当a0时,(x4a)(x6a)0,解得:x6a;当a0时,x0,解得:x0;当a0,解得: x4a;当a时,(x4a)(x6a)0,解得: 6ax0时,x6a;当a0时,x0;当a0时,x4a;当a时,6ax4a 。巩固练习1集合Ax|x|4,xR,Bx|x3|a,xR,若AB,那么a的范围是( )。A. 0a1 B. a1 C. a1 D. 0a0且a1,plog(aa1),qlog(aa1),则p、q的大小关系是( )。A. pq B. pq D.当a1时,pq;当0a1时,p0、a0、a1、0a0、x0两种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/TS 21310:2025 EN Traditional Chinese medicine - Microscopic examination of medicinal herbs
- 【正版授权】 ISO/TS 14812:2025 EN Intelligent transport systems - Vocabulary
- 【九江】2025年上半年江西九江市事业单位“才汇九江”招聘高层次人才373人笔试历年典型考题及考点剖析附带答案详解
- 2025年公共营养师之三级营养师能力检测试卷A卷附答案
- 【张家界】2025年湖南张家界市市直事业单位公开招聘急需紧缺人员41人笔试历年典型考题及考点剖析附带答案详解
- 中国高考评价体系解读课件
- 第四章氧化还原反应第三节氧化还原反应的方向和限度无机化学电
- 完璧归赵教学课件
- Brand KPIs for milk:Lac Del in Mexico-英文培训课件2025
- 2025年小学科学课程标准考试测试题及答案
- 压力容器事故应急预案
- 招聘工作人员笔试考务手册
- 2024年广东茂名信宜市事业单位招聘工作人员144人笔试【重点基础提升】模拟试题(共500题)附带答案详解
- 2024年秋新版人教版三年级英语上册电子课本
- 2024-2034年中国油桐种植行业市场调查研究及投资战略咨询报告
- 六君子汤的现代中药制剂研究
- 管理思维培训
- 中国古代安全文化发展及其启示
- 教师信息技术能力提升培训课件
- 2022年宜宾机场集团有限公司招聘考试真题
- 金属与石材幕墙工程技术规范-JGJ133-2013含条文说
评论
0/150
提交评论