


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
组合教案1教学内容:人教版数学高中选修23组合教学目标:1、进一步巩固组合、组合数的概念及其性质;2、能够解决一些组合应用问题教学重点:解决一些组合应用问题教学过程:组合数的性质1:一般地,从n个不同元素中取出个元素后,剩下个元素因为从n个不同元素中取出m个元素的每一个组合,与剩下的n - m个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出n - m个元素的组合数,即:在这里,主要体现:“取法”与“剩法”是“一一对应”的思想证明:又 ,说明:规定:;等式特点:等式两边下标同,上标之和等于下标;此性质作用:当时,计算可变为计算,能够使运算简化.例如=2002; 或2组合数的性质2:+一般地,从这n+1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有含有的组合是从这n个元素中取出m -1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个根据分类计数原理,可以得到组合数的另一个性质在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想证明: + 说明:公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数; 此性质的作用:恒等变形,简化运算 例11一个口袋内装有大小不同的7个白球和1个黑球,(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?解:(1),或,;(2);(3)例12(1)计算:;(2)求证:+解:(1)原式;证明:(2)右边左边例13解方程:(1);(2)解方程:解:(1)由原方程得或,或, 又由得且,原方程的解为或上述求解过程中的不等式组可以不解,直接把和代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业技术人员年度考核个人总结护士长
- 系统高效能量存储与转换方案
- 2025年男式夹克行业研究报告及未来行业发展趋势预测
- 2025年裤子行业研究报告及未来行业发展趋势预测
- 创国家卫生城市知识竞赛试题及答案
- 2025年观光游览航空服务行业研究报告及未来行业发展趋势预测
- 2025年精制茶行业投资趋势与盈利模式研究报告
- 多学科协作诊治MDT管理制度试行
- 2025年成人袜行业研究报告及未来行业发展趋势预测
- 2025年其他原动设备制造行业研究报告及未来行业发展趋势预测
- 电动自行车新标准培训
- 浙江省杭州市滨江区杭二滨江、杭二钱江2024-2025学年高一上学期期末考英语试卷(原卷版+解析版)
- 制造技术部工作总结报告
- DB11-T 1947-2021 国土空间分区规划计算机辅助制图标准
- 教培机构培训资料如何上好第一次课
- Unit-1-4-单词背诵+默写学案高中英语牛津译林版(2020)必修第二册
- 2025年中国邮政集团招聘笔试参考题库含答案解析
- 民警给学生上交通安全课
- 2024年司法考试刑法真题及答案
- 《隔离技术规范》课件
- 《云南省学校安全条例(修订草案)》知识培训
评论
0/150
提交评论