已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章习题解答1设随机变量XB(30,),则E(X)( D ). A.; B.; C.; D.5.2已知随机变量X和Y相互独立,且它们分别在区间-1,3和2,4上服从均匀分布,则E(XY)=( A ).A. 3;B. 6; C. 10; D. 12. 因为随机变量X和Y相互独立所以3设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X2的数学期望E(X 2)_18.4_4某射手有3发子弹,射一次命中的概率为,如果命中了就停止射击,否则一直射到子弹用尽设表示X耗用的子弹数求E(X).解:X123P2/32/91/95设X的概率密度函数为求 解:,.6设随机向量(X,Y)的联合分布律为:YX-112-10.250.10.320.150.150.05求 解:X-12P0.650.35.Y-112P0.40.250.357设二维随机向量(X,Y)的联合概率密度为求(1); (2) . 解:8设随机变量X与Y相互独立,且D(X)=1,D(Y)=2,则D(X-Y)= 3 .9设正方形的边长在区间0,2服从均匀分布,则正方形面积A=X2的方差为_64/45_. X的密度函数10设随机变量X的分布律为X-1012P1/51/21/51/10求 D(X). 解:,,.11设随机变量X的概率密度函数为,求D(X )解:,.12设随机变量X,Y相互独立,其概率密度函数分别为 求D(X ),D(Y ),D(X-Y )解:由本章习题5知,于是有.由知.由于随机变量X,Y相互独立,所以.13设D(X)=1,D(Y)=4,相关系数,则cov(X,Y)=_1_.cov(X,Y)=14设二维随机变量(X, Y )的联合密度函数为求cov(X,Y ), 解:,.由对称性 , .cov(X,Y )=15设二维随机变量(X, Y )有联合概率密度函数试求E(X),E(Y),cov(X, Y), 解:,由对称性.,cov(X,Y )= .,. 由对称性.16设X, Y相互独立,XN(0,1),Y N(1,2),Z = X+2Y,试求X与Z的相关系数解:,.17设随机变量(5,3),Y在0,6上服从均匀分布,相关系数,求(1);(2).解:,18设二维随机向量(X,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年低空经济产业集群创新投入研究报告
- 抖音直播合作协议书
- 精神科患者噎食应急预案演练脚本
- 传染病治疗技术实践操作培训考试2025年试卷及答案
- 2025年环境保护知识宣传考试题及答案
- 肺栓塞的应急预案演练脚本
- 2025年关于新安全生产法知识竞赛培训试题及答案
- 公司生产安全事故和自然灾害综合应急预案
- 研学旅行活动安全应急预案
- 医学影像学习题库答案
- 2026年高考作文备考训练之作文讲评:“预测”渗透在人类生活的各个领域
- 2025年骨科专科护士考试试题练习题与答案
- 不停水施工方案
- 2025年度春季中国南水北调集团水网发展研究有限公司招聘拟聘人员笔试历年备考题库附带答案详解试卷2套
- 中原银行笔试题目及答案
- 北京邮电大学招聘笔试真题2024
- 现代化物流培训
- 动态图形设计课件大纲
- (2025)胎动管理专家共识
- 湖南省长沙市望城区第一中学2025-2026学年高二上学期期中考试数学试卷
- JJG 693-2011可燃气体检测报警器
评论
0/150
提交评论