




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.2平面向量数量积【目标解读】1. 要求学生掌握平面向量数量积的坐标表示2. 掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式.3. 能用所学知识解决有关综合问题.【课前预习】1.复习回顾(1)两个非零向量夹角的概念已知非零向量与,作,则()叫与的夹角.(2)平面向量数量积(内积)的定义:已知两个非零向量与它们的夹角是,则数量|cosq叫与的数量积,记作,即有= |cosq,().并规定与任何向量的数量积为0. (3)向量的数量积的几何意义:数量积等于的长度与在方向上投影|cosq的乘积.(4)两个向量的数量积的性质:设、为两个非零向量,是与同向的单位向量.1 = =|a|cosq; 2 = 03 当与同向时, = |;当与反向时, = -|. 特别的= |2或4 cosq = ;5| |(5)平面向量数量积的运算律交换律: = 数乘结合律:() =() = ()分配律:( + )= + 2 平面两向量数量积的坐标表示已知两个非零向量,试用和的坐标表示.设是轴上的单位向量,是轴上的单位向量,那么,所以又,所以这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即3. 平面内两点间的距离公式一、 设,则或.(2)如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)二、 向量垂直的判定设,则三、 两向量夹角的余弦() cosq =【典型例题】例1. 已知A(1,2),B(2,3),C(-2,5),试判断ABC的形状,并给出证明.解:, 所以ABC是直角三角形例2. 已知= (3,-1),= (1,,2),求满足的向量. 解:设= (t,s), 由 = (2, -3)例3. 已知(,),(,),则与的夹角是多少?分析:为求与夹角,需先求及,再结合夹角的范围确定其值.解:由(,),(,)有(),记与b的夹角为,则又,评述:已知三角形函数值求角时,应注重角的范围的确定.例4. 如图,以原点和A(5,2)为顶点作等腰直角OAB,使B = 90,求点B和向量的坐标.解:设B点坐标(x,y),则= (x,y),= (x-5,y-2) x(x-5) + y(y-2) = 0即:x2 + y2 -5x - 2y = 0又| = | x2 + y2 = (x-5)2 + (y-2)2即:10x + 4y = 29由B点坐标或;=或 例5. 在ABC中,=(2,3),=(1,k),且ABC的一个内角为直角,求k值.解:当A = 90时,= 0,21 +3k = 0 k = 当B = 90时,= 0,=-= (1-2, k-3) = (-1, k-3)2(-1) +3(k-3) = 0 k = 当C = 90时,= 0,-1 + k(k-3) = 0 k =【练习】1.若=(-4,3),=(5,6),则3|( )A.23 B.57 C.63 D.83答案:D2.已知A(1,2),B(2,3),C(-2,5),则ABC为( )A.直角三角形 B.锐角三角形 C.钝角三角形 D.不等边三角形答案:A3.已知=(4,3),向量是垂直的单位向量,则等于( )A.或 B.或C.或 D.或答案:D4. =(2,3),=(-2,4),则(+)(-)= .答案:-75.已知A(3,2),B(-1,-1),若点P(x,-)在线段AB的中垂线上,则x= .答案:6.已知A(1,0),B(3,1),C(2,0),且=,=,则与的夹角为 答案:7. 已知=(1,2),=(-3,2),当k为可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年环渤海地区房地产市场区域分化特点与投资布局研究报告
- 成人继续教育2025年线上学习模式创新与学习效果提升策略研究与应用报告
- 工业互联网平台计算机视觉缺陷检测技术2025年研发趋势与投资机会报告
- 2025年银行零售业务数字化营销转型中的金融科技融合报告
- 医疗器械售后服务市场发展现状报告:2025年服务质量提升关键路径
- 2025年智能健身工作室连锁行业市场潜力与投资机会研究报告
- 2025年民办教育行业合规运营模式创新与品牌影响力拓展实践报告
- 在线职业教育市场技术创新2025年市场规模与课程技术创新应用研究报告
- 2025年工业互联网平台异构数据库融合技术的数据压缩与存储优化报告
- 传统食品工业迈向高端:2025年技术改造与产业链优化策略报告
- 内控合规风险管理手册
- 传奇辅助脚本
- 宗教场所消防安全培训课件
- 2024年广东湛江交通投资集团招聘笔试参考题库含答案解析
- 中华人民共和国人民武装警察法释义
- 华为经营管理-华为供应链管理(6版)
- 14S501-2 双层井盖图集
- 2021年成人高等教育学士学位英语水平考试真题及答案
- Windows 7安全配置基线检查指导文件
- 磺化油(DAH)工艺设计书
- (完整版)三菱变频器E740参数设置
评论
0/150
提交评论